• 제목/요약/키워드: 커널 주성분분석

검색결과 19건 처리시간 0.023초

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

커널 주성분 분석의 앙상블을 이용한 다양한 환경에서의 화자 식별 (Speaker Identification on Various Environments Using an Ensemble of Kernel Principal Component Analysis)

  • 양일호;김민석;소병민;김명재;유하진
    • 한국음향학회지
    • /
    • 제31권3호
    • /
    • pp.188-196
    • /
    • 2012
  • 본 논문에서는 커널 주성분 분석 (KPCA, kernel principal component analysis)으로 강화한 화자 특징을 이용하여 복수의 분류기를 학습하고 이를 앙상블 결합하는 화자 식별 방법을 제안한다. 이 때, 계산량과 메모리 요구량을 줄이기 위해 전체 화자 특징 벡터 중 일부를 랜덤 선택하여 커널 주성분 분석의 기저를 추정한다. 실험 결과, 제안한 방법이 그리디 커널 주성분 분석 (GKPCA, greedy kernel principal component analysis)보다 높은 화자 식별률을 보였다.

수정된 커널 주성분 분석 기법의 분류 문제에의 적용 (Modified Kernel PCA Applied To Classification Problem)

  • 김병주;심주용;황창하;김일곤
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.243-248
    • /
    • 2003
  • 본 논문에서는 학습 자료로부터 비선형 특징추출과 분류를 위한 점진적인 커널 주성분 분석 방법(IKPCA)을 제안한다. 일괄처리 방식의 커널 주성분 분석 방법은 학습 자료의 크기가 클 경우 과도한 계산량이 문제가 된다. 또한 새로 추가 되는 학습 자료가 있을 경우 고유벡터를 계산하기 위해 고유공간 전체를 다시 계산해야 하는 문제점이 있다. IKPCA는 이러한 문제점들을 고유공간 모델의 점진적인 계산과 경험 커널사상에 의해 해결하였다. IKPCA는 일괄처리방식의 커널 주성분 분석에 비해 기억공간 요구량에 있어 효율적이며 학습 자료의 재학습에 의해 성능을 쉽게 향상시킬 수 있다. 비선형 자료에 대한 실험을 통해 IKPCA는 일괄처리방식의 커널 주성분 분석 방법에 비해 특징추출과 분류 문제의 성능에 있어 유사한 결과를 나타내었다.

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

잡음 민감성이 향상된 주성분 분석 기법의 비선형 변형 (A Non-linear Variant of Improved Robust Fuzzy PCA)

  • 허경용;서진석;이임건
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.15-22
    • /
    • 2011
  • 주성분 분석(PCA)은 데이터의 차원을 줄이면서 최대의 데이터 변이를 보존하는 기법으로 차원 축소나 특징 추출을 위해 널리 사용되고 있다. 하지만 PCA는 잡음에 민감하며 가우스 분포에 대하여만 유효하다는 단점이 있다. 잡음 민감성의 개선을 위해 다양한 방법이 제시되었고 그 중 퍼지 소속도를 이용한 반복적 최적화 기법인 RF-PCA2가 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2는 가우스 분포에만 사용할 수 있는 선형 알고리듬이라는 한계가 있다. 이 논문에서는 RF-PCA2와 커널 주성분 분석(kernel PCA, K-PCA)을 결합하여 가우스 분포 이외의 분포들도 다룰 수 있는 비선형 알고리듬인 improved robust kernel fuzzy PCA (RKF-PCA2)를 제안한다. RKF-PCA2는 RF-PCA2 알고리듬의 잡음 강건성과K-PCA의비선형성을 통해 기존알고리듬에 비해 잡음민감성이 적으며 가우스분포 한계를 효과적으로 극복할 수 있다. 이러한 사실은 실험 결과를 통해 확인할 수 있다.

지역특징분석을 이용한 SVM 커널 디자인 (SVM Kernel Design Using Local Feature Analysis)

  • 이일용;안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2010
  • 얼굴인식과 같은 고차원 영상의 패턴분류 문제에서는 특징추출과정이 필수적이라 할 수 있다. 특징추출방법 중 부분공간기법은 데이터의 표현이 우수할 뿐만 아니라 차원 감소 면에서도 효율적이라 보고되고 있으며, 그 대표적인 방법으로 주성분분석, 선형판별분석 등이 널리 알려져 있다. 하지만, 이들 방법은 전역적 변환 방법으로써 포즈, 조명 등의 변화에 민감하여, 그 변화량이 크면 전역적 변환으로 인한 얼굴정보가 전체적으로 손실될 가능성이 크다. 따라서, 이러한 변화들에 대해 잘 대처하기 위해서는 얼굴영상에서 변화들을 상쇄시키는 정규화 작업을 수행해야만 한다. 정규화를 추구하는 이유는 일반적인 얼굴과 가깝게, 다시말해 평균 얼굴과 가깝게 하기 위함이고, 이러한 정규화를 위해서는 부분적 변환 방법이 이상적이라 할 수 있다. 이 방법은 변환으로 인한 얼굴 정보가 부분적 손실만을 유발하기 때문에 전역적 변환 방법에 비해 적합하다고 할 수 있다. 본 논문에서는 지역적 부분공간기법 중 지역특징분석을 SVM커널에 적용하여, 기존 SVM다항식커널에 지역적 정보를 포함시킴으로써, 보다 강력하고 새로운 SVM커널을 디자인하였다.

특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선 (Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment)

  • 소병민;김경화;김민석;양일호;김명재;유하진
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2011
  • 본 논문에서는 supervector linear kernel SVM을 사용한 화자식별 시스템의 성능을 개선하는 방법을 제안하였다. 제안한 방법은 긴 학습 데이터를 여러 개의 짧은 학습 데이터로 분할하는 것을 기본 아이디어로 하고 있다. 제안한 방법의 성능을 평가하기 위해 서로 다른 4가지 데이터베이스에 PCA, GKPCA, KMDA를 사용하여 특징 강화를 하고 실험한 뒤 결과를 분석하였다. 실험 결과 제안한 방법이 supervector linear kernel SVM을 사용한 화자 식별 성능을 향상 시키는 것을 확인하였다.

다양한 차원 축소 기법을 적용한 문서 군집화 성능 비교 (Comparison of Document Clustering Performance Using Various Dimension Reduction Methods)

  • 조희련
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.437-438
    • /
    • 2018
  • 문서 군집화 성능을 높이기 위한 한 방법으로 차원 축소를 적용한 문서 벡터로 군집화를 실시하는 방법이 있다. 본 발표에서는 특이값 분해(SVD), 커널 주성분 분석(Kernel PCA), Doc2Vec 등의 차원 축소 기법을, K-평균 군집화(K-means clustering), 계층적 병합 군집화(hierarchical agglomerative clustering), 스펙트럼 군집화(spectral clustering)에 적용하고, 그 성능을 비교해 본다.

가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합 (Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning)

  • 유철상;박주영
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.297-305
    • /
    • 2008
  • 최근들어, 커널 기법(kernel method)은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 특히, 서포트 벡터 머신(support vector machine)이나 커널 주성분 분석(kernel principal component analysis) 등의 방법론에서 커널의 역할은 매우 중요한데, 이는 고전적인 선형 머신이 비선형성을 효과적으로 다룰 수 있도록 일반화 해줄 수 있기 때문이다. 본 논문에서는 커널 기반 가우시안 프로세스(gaussian process) 함수근사 기법과 서포트 벡터 학습을 이용하여 레이더와 강우계의 관측 데이터를 융합하는 문제를 고려한다. 그리고, 국내의 강원, 경북 및 충북에 걸쳐있는 지역에 대한 레이더 자료 및 강우계 자료를 대상으로 하여 본 논문에서 고려하는 방법론들에 의해 데이터 융합을 수행한 결과를 제시하고, 성능비교를 수행한다.

Support Vector Machine을 이용한 문맥 민감형 융합 (Context Dependent Fusion with Support Vector Machines)

  • 허경용
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.37-45
    • /
    • 2013
  • 문맥 종속형 융합(CDF, Context Dependent Fusion)은 여러 분류기의 결과를 종합하여 성능을 향상시키는 융합 방법으로 주어진 문제의 문맥을 균일한 여러 문맥으로 나누고 각 문맥에서 문맥 종속적인 융합을 시도함으로써 기존 융합 방법에 비해 향상된 성능을 보여주었다. 하지만 CDF는 학습해야할 파라미터의 개수가 많아 학습 데이터가 적은 경우 잡음에 민감한 문제점이 있으며, 선형 알고리듬이라는 한계로 인해 문맥 추출 및 지역적 융합 과정에서 성능 저하의 원인이 된다. 본 논문에서는 CDF의 문제점을 완화할 수 있는 방법으로 SVM(Support Vector Machine)과 커널 주성분 분석을 이용한 CDF-SVM을 제안하였다. 커널 주성분 분석은 입력 벡터에 비선형 변환을 가함으로써 타원형이 아닌 비정형의 클러스터 생성이 가능하도록 해주며, SVM은 융합과정에서 비선형 경계의 생성을 가능하게 해주어 CDF의 선형성 제약을 극복하도록 해준다. 또한 목적함수에 정규화 항을 추가함으로써 잡음 민감성을 줄이도록 하였다. 제안한 CDF-SVM은 기존 CDF 및 그 변형들에 비해 나은 성능을 보여주었으며 이는 실험 결과를 통해 확인할 수 있다.