• 제목/요약/키워드: 캡톤

검색결과 4건 처리시간 0.018초

멤브레인의 접힘 거동 연구 (Crease Behavior of Thin Membrane)

  • 우경식
    • 한국항공우주학회지
    • /
    • 제35권10호
    • /
    • pp.905-911
    • /
    • 2007
  • 이 논문에서는 기하학적 및 재료적 비선형 유한요소해석을 통하여 멤브레인의 접힘 거동을 연구하였다. 얇은 멤브레인의 단면에 대해 평면변형률을 가정하여 2차원 요소로 모델링 하였다. 접힘 과정은 먼저 멤브레인 메쉬를 접은 후, 두 개의 강체 접촉면을 사용하여 지정된 접힘 간극까지 압축한 다음, 강체 접촉면을 풀어 접힘 형상을 얻는 순서로 모사하였다. 다양한 접힘 간극에 대해 해석을 수행하여 접힘 강도가 초기 전개각에 미치는 영향을 중심으로 결과를 고찰하였다. 또한 실제 시편에 대하여 실험을 수행하여 그 결과를 해석결과와 비교하였다.

폴리이미드 재질의 소형 플라스틱 연소기의 크기에 따른 특성 연구 (Study of scale on small polyimide combustor performance)

  • 신강창;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.45-48
    • /
    • 2008
  • MEMS 기술의 발전에 따라 마이크로 시스템이 개발되면서 마이크로 시스템이 요구하는 높은 에너지를 제공하는 에너지원으로 연소기반의 초소형 동력장치에 대한 연구가 진행되고 있다. 초소형 동력장치는 별도의 열원이 있어야 하기에 이와 연계되는 초소형 연소기가 필요하다. Swiss-roll 연소기는 연소기의 크기와 형상, 재질에 대한 연구들이 진행되어 왔다. 선행연구결과 연소기 재질의 열전도도가 낮고, 재질의 두께가 얇을수록 연소기의 성능이 좋아진다는 결론을 얻을 수 있었다. 본 연구에서는 낮은 작동온도를 요구하는 PEM형 연료전지에의 적용가능성을 검토하기 위해서 열전도율이 낮은 polyimide 연소기를 제작하여 성능분석을 수행하였다.

  • PDF

초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작 (Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle)

  • 강래형;장희숙;임주영;한재흥
    • Composites Research
    • /
    • 제22권6호
    • /
    • pp.7-12
    • /
    • 2009
  • 본 연구는 압전 작동기 기반 초소형 날갯짓 비행체의 날갯짓 운동을 위해, 압전 작동기의 펌핑 운동을 효과적으로 날갯짓 운동으로 변환하는 힌지 메커니즘 제작 기법에 대해 다루었다. 경량화를 위해 탄소섬유/에폭시(Graphite/Epoxy) 프리프레그를 사용하고, 반복적인 제작이 용이하도록 레이저 절단기를 활용하였으며, 힌지부는 얇은 캡톤 필름을 이용해 컴플라이언트(compliant) 메커니즘으로 구성하였다. 제작된 힌지 메커니즘을 압전 유니모프 작동기 PUMPS에 연결하여 동작시켜 본결과, 300V 170Hz 인가 전압에서 $173^{\circ}$의 큰 날갯짓 각을 가짐을 확인하였다.

허리통증유발 탈출 수핵의 대용량제거를 위한 플라즈마발생 전극개발에 관한 연구

  • 윤성영;장윤창;김곤호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.241-241
    • /
    • 2011
  • 최근들어 저온플라즈마를 이용한 생물학적 응용분야가 각광을 받고 있다. 특히 전기전도도를 가진 전해질 내에서 형성된 액상 플라즈마는 열손상없이 암, 세균 및 비정상 장기조직의 제거가 가능하다는 점에서 기존 시술들이 가지는 문제를 해결할 수 있다. 허리통증을 유발하는 탈출 수핵을 대용량으로 제거하기위한 플라즈마발생 전극에 관한 연구가 수행되었다. 수핵 분해량을 늘리기 위해서는 플라즈마를 통하여 다량의 수산화기 라디컬을 형성, 수핵표면에 조사해야 한다. 이를 위하여 6개의 텅스텐 전극표면에서 기포를 발생시켜 플라즈마 발생면적을 넓힐 수 있었다. 텅스텐 전극들은 캡톤코딩과 세라믹 스페이서를 통하여 분리되었고, 전극의 후방에는 SUS 재질의 환형 접지전극을 배치하여 6개의 텅스텐 전극표면에서 모두 기포가 발생할 수 있도록 하였다. 시술적용시 플라즈마 및 전극이 가지는 제한 조건은 단백질 변성을 막기위한 섭씨 45도 이하의 온도 상승과 조직에 대한 기계적인 손상 방지를 위한 2.5 mm 이하의 전체 전극 굵기이다. 이를 만족하는 가운데 수산화기 라디컬 형성을 증대할 수 있는 전극의 구조를 결정하기 위하여 1-D 전기 열유체 모델 도입하였다. 모델에서 도출된 기포의 두께를 바탕으로 다중전극간의 거리 조절을 통하여 플라즈마 방전구조를 전극 - 전극 (기포두께${\times}2$ > 전극간 거리)과 전극 - 기포표면 (기포두께${\times}2$ < 전극간 거리)으로 통제하였다. 형성된 플라즈마의 소모전력, 전자 밀도및 수산화기 라디컬의 회전온도를 분석하기 위하여 0.9% 염화나트륨 수용액, 1.6 S/m, 전해질에서 플라즈마 형성를 형성하고 전기신호 및 광학신호를 관측하였다. 전극에 인가된 전압은 340 VRMS이며 운전주파수는 380 kHz이다. 실험 결과, 전극 - 기포표면 방전구조는 전극 -전극 방전구조에 비하여 전해질의 저항역할로 인하여 방전전류가 3.4 Ipp에서 1.6 Ipp로 감소하였으나, 기포표면에서의 물분자의 분해로 인하여 수산화기 라디컬에서의 발광세기는 약 4배 증가하였다. 또한 수산화기의 회전온도 분포상에서도 전극 - 기포표면 방전은 주변 물분자의 열교환으로 인하여 전극 -전극간 방전의 1500K 에 비하여 낮은 400K를 보였다. 이는 전극-기포표면 방전구조의 전극이 낮은 온도의 수산화기를 다량으로 형성할 수 있음을 시사하며, 카데바를 이용한 실험에서 220초에 걸쳐 약 87%의 수핵을 기계적 손상 및 단백질 변형없이 효과적으로 제거함을 확인하였다.

  • PDF