• Title/Summary/Keyword: 캠 설계

Search Result 121, Processing Time 0.019 seconds

Experimental Study on the Leakage Characteristics of Stem Seals Depending on the Driving Distance of the LPG Vehicle (LP차량의 주행거리에 따른 스템시일의 누설특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • This paper presents the experimental results on the oil leakage characteristics of stem seals depending on the driving distance in LPG vehicle. The increased speeds of the camshaft and oil temperatures do not affect to the oil leakage of the seals because of the low level of driving distances less than 40,000 km. But the increased driving distance over 50,000 km to 100,000 km shows a rapid deteriorating the sealing performance, which may increase the oil leakage through the rubbing surfaces between the poppet valves and stem seals. In this result, the stem seal may be exchanged about the driving distance of 50,000 km to 60,000 km with a currently used stem seal in LPG car. Thus, the stem seal for a poppet valve should be resigned for the increased durability and long life.

  • PDF

Design of Water Surface Hovering Drone for Underwater Stereo Photography (수중 입체촬영을 위한 수면호버링 드론 설계)

  • Kim, Hyeong-Gyun;Kim, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • In order to shoot underwater, the photographer must be equipped with shooting equipment and enter into the water. Since the photographer directly enters the water, safety accidents occur frequently due to various obstacles or deep water in the water. The proposed underwater stereo photography technique can solve the safety accident problem caused by the entry of the photographer into the water by using the drone for underwater photographing. In addition, this technique has the advantage of obtaining underwater images at low cost. In this study, the angle of the proposed cam for stereoscopic photography was analyzed and the condition that the proper stereoscopic image can be viewed was defined as the distance from the floor of 18cm to the floor distance of 41.4cm. This provision is proposed to be used to adjust the height of the shooting area descended by the elevation chain of the water surface hovering drones.

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Multi-legged Walking Robot Using Complex Linkage Structure (복합 링크기구를 이용한 다족 보행로봇)

  • Im, Sang-Hyun;Lee, Dong Hoon;Kang, Hyun Chang;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

Camber Reconstruction for a Prefab PSC Girder Using Collocated Strain Measurements (병치된 변형률 계측치를 이용한 프리팹 PSC 거더 캠버 재구성)

  • Kim, Hyun Young;Ko, Do Hyeon;Park, Hyun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.151-162
    • /
    • 2022
  • Prefab members have attracted attention because they can be mass-produced in factories through smart construction technology. For prefab prestressed concrete girders, it is important to manage the shapes of the girders properly from production to the pre-installation stage for consistency with the prefab floor plate during the erection process. This paper presents a camber reconstruction method using collocated strain measurements from the top and bottom of the prefab girder. In particular, the camber reconstruction method is applied to measured strain data in which the time-dependent behavior of concrete is considered after the introduction of prestress. Through Monte Carlo numerical simulations, the statistical accuracy of the reconstructed camber for a limited number of sensors, measurement errors, and nonlinear time-dependent behaviors are analyzed and validated.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

A Scheme of Security Drone Convergence Service using Cam-Shift Algorithm (Cam-Shift 알고리즘을 이용한 경비드론 융합서비스 기법)

  • Lee, Jeong-Pil;Lee, Jae-Wook;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.29-34
    • /
    • 2016
  • Recently, with the development of high-tech industry, the use of the drones in various aspects of daily life is rapidly advancing. With technical and functional advancements, drones have an advantage of being easy to be utilized in the areas of use according to various lifestyles. In addition, through the diversification of the drone service converged with image processing medium such as camera and CCTV, an automated security system that can replace humans is expected to be introduced. By designing these unmanned security technology, a new convergence security drone service techniques that can strengthen the previous drone application technology will be proposed. In the proposed techniques, a biometric authentication technology will be designed as additional authentication methods that can determine the safety incorporated with security by selecting the search and areas of an object focusing on the objects in the initial windows and search windows through OpenCV technology and CAM-Shift algorithm which are an object tracking algorithm. Through such, a highly efficient security drone convergence service model will be proposed for performing unmanned security by using the drones that can continuously increase the analysis of technology on the mobility and real-time image processing.

Comparison of marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures fabricated from solid working casts and working casts from a removable die system (가철성 다이 시스템으로 제작된 작업 모형과 솔리드 작업 모형 상에서 제작된 지르코니아 3본 고정성 치과 보철물의 변연 및 내면 적합도 비교)

  • Wan-Sun Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.72-81
    • /
    • 2024
  • Purpose: This study aimed to assess the marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures (FPDs) fabricated via computer-aided design and computer-aided manufacturing (CAD/CAM) from solid working casts and removable die system. Materials and Methods: The tooth preparation protocol for a zirconia crown was executed on the mandibular right first premolar and mandibular right first molar, with the creation of a reference cast featuring an absent mandibular right second premolar. The reference cast was duplicated using polyvinyl siloxane impression, from which 20 working casts were fabricated following typical dental laboratory procedures. For comparative analysis, 10 FPDs were produced from a removable die system (RD group) and the remaining 10 FPDs from the solid working casts (S group). The casts were digitized using a dental desktop scanner to establish virtual casts and design the FPDs using CAD. The definitive 3-unit monolithic zirconia FPDs were fabricated via a CAM milling process. The seated FPDs on the reference cast underwent digital evaluation for marginal and internal fit. The Mann-Whitney U test was applied for statistical comparison between the two groups (α = 0.05). Results: The RD group showed significantly higher discrepancies in fit for both premolars and molars compared to the S group (P < 0.05), particularly in terms of marginal and occlusal gaps. Color mapping also highlighted more significant deviations in the RD group, especially in the marginal and occlusal regions. Conclusion: The study found that the discrepancies in marginal and occlusal fits of 3-unit monolithic zirconia FPDs were primarily associated with those fabricated using the removable die system. This indicates the significant impact of the fabrication method on the accuracy of FPDs.

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.