• 제목/요약/키워드: 캐스케이드-상관 학습 알고리즘

검색결과 2건 처리시간 0.014초

변형된 캐스케이드-상관 학습 알고리즘을 적용한 그룹 고장 데이터의 소프트웨어 신뢰도 예측 (Software Reliability Prediction of Grouped Failure Data Using Variant Models of Cascade-Correlation Learning Algorithm)

  • 이상운;박중양
    • 정보처리학회논문지D
    • /
    • 제8D권4호
    • /
    • pp.387-392
    • /
    • 2001
  • 많은 소프트웨어 프로젝트는 시험이나 운영단계에서 고장시간이나 고장 수 데이타보다 그룹 고장 데이터(여러 고장 간격에서 또는 가변적인 시간 간격에서의 고장들)가 수집된다. 본 논문은 그룹 고장 데이터에 대해 가변적인 미래의 시간에서 누적 고장 수를 예측할 수 있는 신경망 모델을 제시한다. 2개의 변형된 캐스케이드-상관 학습 알고리즘을 제안하였다. 제안된 신경망 모델들은 다른 잘 알려진 신경망 모델과 통계적 소프트웨어 신뢰도 성장 모델과 비교되었다. 실험결과, 그룹 데이터에 대해 변형된 캐스케이드-상관 학습 알고리즘이 좋은 예측 결과를 나타내었다.

  • PDF

캐스케이드-상관 학습 알고리즘의 패밀리 (Family of Cascade-correlation Learning Algorithm)

  • 최명복;이상운
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.87-91
    • /
    • 2005
  • Fahlman과 Lebiere의 캐스케이드-상관 (CC) 학습 알고리즘은 신경망의 구성 알고리즘에서 가장 널리 사용되는 것 중의 하나이며, 망에서 은닉 뉴런을 캐스케이드 형태로 취함으로서 매우 강력한 비선형을 표현할 수 있다. 비록 이 멱승이 유용할지 몰라도 대체로 문제를 푸는데는 강력한 비선형성이 요구되지 않으며 단점이 될 수도 있다. CC 알고리즘의 캐스케이드 구조 및 출력 뉴런의 가중치 훈련에 대한 변형된 형태인 3개 모델이 제안되고 경험적으로 비교되었다. 실험결과 다음과 같은 결론을 얻었다: (1) 패턴분류에 있어서, 새로 추가되는 은닉 뉴런과 출력층간 연결강도만 훈련시키는 모델이 가장 좋은 예측력을 나타내었다; (2) 함수근사 문제에 있어서는 입력-출력 연결강도를 제거하고 시그모이드-선형 작동함수를 사용하는 모델이 CasCor 알고리즘보다 좋은 결과를 나타내었다.