• Title/Summary/Keyword: 캐비테이션 침식

Search Result 58, Processing Time 0.037 seconds

Electrochmical Characteristics by Water Cavitation Peening of Cu Alloy (워터캐비테이션피닝된 동합금의 전기화학적 특성평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1083-1090
    • /
    • 2012
  • Copper alloys are widely used for casting materials including ship's propellers and pump impellers as they provide high corrosion resistance. In addition, the demand for these alloys is increasing with rapid growth of offshore structures and exploitation of various substitute energy sources. However, they require regular maintenance because of erosion and cavitation damages induced by exposure to marine environment at high speed flows for a long period of time. Water cavitation peening have received attention as one of surface modifications for durability improvement of the copper alloys. This is a environment friendly technology without influence of heat and easily applicable to casting materials. In this research, water cavitation peening was employed in distilled water for copper alloy castings as a function of time and evaluation of corrosion resistance was followed in seawater for the modified surface by using electrochemical methods. The result suggests that the water cavitation peening for 2 minutes was found to be the optimal peening parameter in terms of durability and corrosion resistance.

Evaluation of cavitation characteristics for anodized 5000 series Al alloy with various sealing treatment in sea water (양극산화 기술이 적용된 5000계열 알루미늄 합금의 다양한 실링처리에 따른 해수 내 캐비테이션 특성 평가)

  • Jo, Chung-Hui;Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.146-146
    • /
    • 2016
  • 최근 국민 소득향상과 더불어, 여가시간 증가에 따라 해양레저에 대한 관심이 크게 높아지고 있으며, 그에 따라 레저용 선박 수요도 증가하고 있다. 기존 국내 소형 선박의 경우 FRP(fiber-reinforced plastic)재료로 선박을 건조해 왔다. 그러나 해양환경 규제 강화로 FRP 선박의 건조가 감소하고 있으며, 친환경 선박에 대한 필요성이 대두되고 있다. 따라서 FRP재료를 대체하는 선박용 재료로 친환경적이고 가벼운 소재인 알루미늄 합금 재료가 선박건조 분야에서 각광을 받고 있다. 특히 5000계열 Al-Mg 합금은 가공성과 용접성이 우수하여 주로 구조용으로 많이 사용되고 있으나 경량화에 따른 빠른 선속이 유체충격을 증가시켜 선체에 캐비테이션 손상을 일으킬 수 있다. Al-Mg 합금의 경우에 부식성이 대단히 큰 해양환경에서 부식과 캐비테이션 침식이 복합적으로 일어나면 손상이 빠르게 증가되는 경향을 나타내어 선박의 수명을 현저히 단축시켜 경제적인 손실을 초래한다. 따라서 본 연구에서는 해수 내에서 Al-Mg 합금의 캐비테이션 저항성을 향상시키기 위해 알루미늄 합금 표면에 내식성 뿐만 아니라 경도 및 내마모성 등의 기계적 특성이 우수한 산화피막을 형성시키는 양극산화 기술을 적용하고, 다양한 봉공처리(sealing)방법에 따른 캐비테이션 특성을 평가하였다. 캐비테이션 실험은 압전(piezoelectric) 효과를 이용한 진동발생 장치를 사용하여 $30{\mu}m$ 진폭으로 일정하게 유지하였으며, 시편과 혼 팁 사이의 간격은 1mm로 하였다. 캐비테이션 실험 후에는 시편을 초음파 세척하여 진공 건조기에서 24시간 이상 건조한 후 정밀저울로 무게를 측정하였으며, 표면 손상 형상을 분석하기 위해 주사전자현미경(SEM)과 3D현미경을 이용하여 관찰하였다.

  • PDF

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network (합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구)

  • Kim, Ji-Hye;Lee, Hyoungseok;Hur, Jea-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.129-136
    • /
    • 2021
  • Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.

An Experimental Study on the Effect of Ultrasonic Cavitation on the SS400 in Marine Sludge Oil (선박 슬러지유에서 일반강에 미치는 초음파 캐비테이션 영향에 관한 실험적 연구)

  • Han Won Hui;Cho Dae Hwan;Lee Jin Yeal
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.157-162
    • /
    • 2003
  • The sludge oils were produced necessarily in the ships operation, so that it will be the best way to manage the sludge oils inside ship itself from a viewpoint of the prevention of marine oil pollution from ship. The ultrasonic breaking systems which recycle the sludge oil from ship into usable oil to be brunt is recognized as a most possible recycling device. In this regards, the purpose of this study is to examine erosion damage on the SS400 specimen by cavitation and the effect of impact pressure generated from the demolition of the cavity of ultrasonic vibration in the marine sludge oil environment .. The erosion damage of specimen was investigated mainly on weight loss, weight loss rate and maximum erosion rate with variation of the oil temperature as well as the change of space between transducer horn and specimen. The experimental results showed that as the space between ultrasonic vibrator horn and specimen disk increased, the weight loss and weight loss rate decreased and the values were larger in SFO than in SLO. The experimental results can be useful to the development of sludge oil disposing systems and to consider a countermeasure for the prevention of erosion damages by cavitation.

  • PDF

Effect of Stabilizer on Corrosion and Cavitation Damage in the Sea Water of Electroless Nickel Plating Layer (무전해 니켈도금 층의 해수 내 부식과 캐비테이션 손상에 대한 안정제 효과)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.107-107
    • /
    • 2018
  • 무전해 니켈도금 용액의 성분은 Ni(II)염, 환원제, 적합한 금속 배위 리간드, 안정제 및 특정 특성 요구에 대한 첨가제를 포함한다. 일반적으로 도금 욕에는 미량의 안정제가 함유되어 있다. 만약 적절한 안정화 시스템이 없는 도금 욕에서 도금 공정 시 도금 시작 직후에 많은 양의 니켈 플레이크(Ni flake)가 생성되어 빠르게 도금 용액이 분해되어 더 이상 도금이 어렵게 된다. 그러나 무전해 도금 욕에서 안정제의 역할 및 도금 층에 미치는 영향에 대한 연구는 여전히 부족한 실정이다. 따라서 본 연구에서는 $Pb^{2+}$ 안정제 농도가 도금 층에 미치는 영향과 캐비테이션 침식 실험을 통해 그 내구성을 평가하고자 하였다. 무전해 니켈코팅을 위한 모재는 회주철(FC250)을 $19.5mm{\times}19.5mm{\times}5mm$의 크기로 가공하였다. 회주철의 인장강도는 $330N/mm^2$이며, 그 성분 조성(wt.%)은 3.23 C, 1.64 Si, 0.84 Mn, 0.016 P, 0.013 S 그리고 나머지는 Fe이다. 시험편은 SiC 페이퍼 #1200까지 연마하여 시험편의 표면 거칠기는 $1.6-2.1{\mu}m$ 범위 내로 제작하였다. 무전해 도금 전 시험편은 탈지를 위해 상온의 아세톤 용액에서 3분간 초음파 세척하고, $90^{\circ}C$의 알카리 수용액으로 5분간 세척하였다. 그리고 표면 활성화를 위한 산세척은 5% 황산용액에서 30초 동안 실시하였다. 도금조로 500mL 비커를 사용하였으며, 모든 시험편은 2시간 동안 무전해 니켈도금을 실시하였다. 그리고 니켈도금 층의 내식성과 내구성을 평가하기 위해 전기화학적 분극 실험을 통한 타펠분석과 ASTM G32 규정에 의거한 캐비테이션 침식 실험을 실시하였다. 그 결과 안정제 농도가 도금 속도와 도금 층의 성분 변화에 크게 영향을 미쳤으며, 그에 따라 도금 층의 내식성과 내구성이 크게 변화되었다.

  • PDF

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

Development of New Cavitation Erosion Test Method for Analyzing the Durability of Erosion Resistance Paint (내침식페인트 성능 판별에 적합한 새로운 캐비테이션 침식시험기법 개발)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Kim, Tae-Gyu;Kim, Kyung-Rae;Jang, Young-Hun;Lee, Sang-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The very erosive cavitation is simulated by an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI. The inclined shaft for propeller makes strong cavitaion, which occurs around the root of a propeller blade. The cavitation begins at the leading edge of the propeller and contracted toward the trailing edge through the reentrant jet action. The cavity focused on the region near the trailing edge collapsed over the blade surface. As the impact pressure by the cavitation collapsing is too strong, it can damage the blade surface in the form of pit. This cavitation impacts created by the collapsing process are similar to the full-scale ones and are different from those by other erosion test methods. The newly developed cavitation erosion test method can be applied to evaluate the materials such as metals, ceramics and coatings in terms of cavitation resistance.

Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment (예측모델 및 실험을 통한 액적충돌침식 손상 평가)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1105-1110
    • /
    • 2011
  • Flow-accelerated corrosion (FAC) is a well-known phenomenon that may occur in piping and components. Most nuclear power plants have carbon-steel-pipe wall-thinning management programs in place to control FAC. However, various other erosion mechanisms may also occur in carbon-steel piping. The most common forms of erosion encountered (cavitation, flashing, Liquid Droplet Impingement Erosion (LDIE), and Solid Particle Erosion (SPE)), have caused wall thinning, leaks, and ruptures, and have resulted in unplanned shutdowns in utilities. In particular, the damage caused by LDIE is difficult to predict, and there has been no effort to protect piping from erosive damage. This paper presents an evaluation method for LDIE. It also includes the calculation results from prediction models, a review of the experimental results, and a comparison between the UT data in the damaged components and the results of the calculations and experiments.