• Title/Summary/Keyword: 캐비테이션 공동

Search Result 60, Processing Time 0.026 seconds

Experimental Study on the Cavitation Noise of a Hydrofoil (3차원 날개의 캐비테이션 소음 계측시험)

  • Lee, Seung-Jae;Seo, Jong-Soo;Han, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.111-118
    • /
    • 2007
  • In order to investigate the noise characteristics of the different caviation, noise measurements were carried out in a large cavitation tunnel of the Samsuug Ship Model Basin(SSMB). The noise measurements for a 3-dimensional hydrofoil were carried out at the angle of attack of $12^{\circ}$ and $16^{\circ}$ according to the decrease in cavitation number. It is exhibited that sound pressure level(SPL) increased sharply with cavitation inception. The frequency of the noise induced by sheet cavitation was higher than that of tip vortex cavitation in the phase of cavitation inception. Within the range of the high frequency, in the case of fully developed cavitation, sheet cavitation noise was significantly increased in sound pressure level compared with tip vortex cavitation noise. In this study, the noise characteristics of the different cavitation types were considered experimentally and would be utilized as a basis for the analysis of propeller cavitation noise.

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, S.I.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE FLOW (측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석)

  • Lee, B.W.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.149-154
    • /
    • 2009
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flow. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. The results from the present solver have been in a fairly good agreement with the experimental data and other numerical results. After the code validation the strong side flow was applied to include the wake flow effect of the submarine.

  • PDF

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

A Study on the Numerical Prediction of Cavitation In a Centrifugal Pump (원심펌프 내부의 캐비테이션 수치예측에 관한 연구)

  • Mo, J.O.;Kang, S.J.;Kang, H.K.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.335-338
    • /
    • 2006
  • A Numerical study of the cavitation within a centrifugal pump is carried out using CFD commercial code, FLUENT. The objective of this study is to predict the onset of cavitation within the pump blade and the degradation in the pressure rise due to the generation and transport of vapor. A pump designed for the study is a six bladed, one-circular arc impeller design suggested by A.J. Stepanoff et al. The Steady-state calculations are performed for a wide range of flow rate without the cavitation to investigate the pump performance. The design head and efficiency show a very good agreement with the numerical results at the design flow rate. After the validation with the numerical results, the pump performance and the onset of cavitation within the blade is predicted by changing NPSH at the design flow rate.

  • PDF

NUMERICAL CODE DEVELOPMENT OF THE MULTIPHASE FLOW AROUND AN UNDERWATER VEHICLE UNDER SUBMARINE WAKE. (후류중에 있는 수중운동체의 캐비테이션 유동 현상 및 유체력 변화 해석 코드 개발)

  • Park, S.I.;Ha, C.T.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.115-121
    • /
    • 2010
  • Cavitating flow is widely shown in many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work focuses on the numerical analysis of the multiphase flow around the underwater vehicle which was launched from a submarine. The governing equation is the Navier-Stokes equation with a homogeneous mixture mode. The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinate. For the code validation, the results from the present work are compared with the existing experimental and numerical results, and a reasonably good agrements are obtained. The multiphase flow around an underwater vehicle is simulated which includes submarine wake effects.

  • PDF

The Enhacned Atomization of Single Hole Nozzle by Cavitation at The Low Pressure Injection (저압 분사시 캐비테이션에 의한 단공 노즐의 미립화 향상)

  • Son, Jong-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.952-957
    • /
    • 2001
  • The objectives of this investigation were to obtain an excellent spray by cavitation under the low injection pressure. When cavitation occurs in the nozzle hole, the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle made the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the low injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured macroscope images of PMAS and the Sauter mean diameter was measured PDA system. To measure the pressure of the nozzle hole, pressure transducer was used. The results of this study indicated that enhanced atomization of the liquid jet at the low injection pressure was obtained by making the gap and installing the bypass at the single hole nozzle.

  • PDF