• Title/Summary/Keyword: 캐버티 유동

Search Result 11, Processing Time 0.023 seconds

Unsteady Flow in a Cavity Induced by An Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동특성)

  • 서용권;박준관;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.105-116
    • /
    • 1996
  • In this paper, we report the experimental results for the flow pattern and the material transport around a cavity subject to a sinusoidal external flow at the far region to ward the open side of the cavity. A tilting mechanism is used to generate a oscillatory flow inside a shallow rectangular container having a cavity at one side. The surface flow visualization is performed to obtain the unsteady behavior of vortices generated at two edges situated at the entrance of the cavity. It was found that at the period 4.5 sec., the behavior of the vortices is asymmetric, and there exists a steady residual flow in the cavity. The bottom flow patterns are also visualized. There are two regions outside of the cavity where the bottom fluid particles concentrate. The material transport in this flow model is very peculiar; fluid particles in the cavity flows outward through the passage along the walls starting from the edges, and particles in the outer region approach the cavity from the central region.

  • PDF

Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics (액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구)

  • Heo, Hyo-Weon;Jung, Won-Hyuk;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

Study on the Fluid-Surface Characteristics by Using Flow Visualization and Numerical Simulation of Stokes Flow in a Cavity (3차원 캐버티 표면의 스톡스 유동 가시화 및 수치해석을 통한 표면 특성 연구)

  • Heo, Hyo-Weon;Lee, Heon-Deok;Jung, Won-Hyuk;Cho, Dong-Sik;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.44-50
    • /
    • 2011
  • In this study, we propose a method for characterizing fluid-mechanical properties of a fluid surface, such as surface dilatational and shear viscosity, by matching the flow visualization and the numerical simulation for a Stokes flow in a three-dimensional cavity. The surface flow is driven by shear stress exerted on the free surface by an external gas flow. The external gas flow is simulated by using a commercial code, while the Stokes flow is calculated by an in-house code. We have found that the surface flow is very sensitive to the surface tension and other properties. The qualitative feature of the surface flow can be reproduced by the parameter tuning.

Numerical Computation of Unsteady Flow in a Cavity Induced by an Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동에 대한 수치계산)

  • Yong kweon Suh;Park, Yoon-Hwan;Park, Jun-Gwan;Moon, Jong-Ghoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.194-200
    • /
    • 1997
  • A two-dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The numerical computation shows that the aspect ratio of the cavity is not much affecting the overall flow pattern, and for the aspect ratio 2, the deep region of the cavity has a stagnant flow motion. At larger Reynolds number, the flow field is characterized by many small vortices which are not present in the flow visualization. The flow pattern in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles.particles.

  • PDF

Visualization of Unsteady DC Electro-osmotic flow by using Methods of Coupling Fortran and CFX Codes (포트란-CFX 연동해석 기법을 이용한 비정상 DC 전기삼투 유동 가시화)

  • Heo, Young-Gun;Jeong, Jong-Hyeon;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2011
  • In this study, we present methods of coupling a commercial code, ANSYS CFX, and the user Fortran codes for solving an unsteady electro-osmotic flow around a pair of electrodes, receiving DC, attached to the top and the bottom walls of a two-dimensional cavity. We developed a module of Fortran programs for solving the ion-transport equations as well as the Poisson equations for the potential to be used in coupling with the CFX. We present how the developed codes are applied to solving the transient DC electro-osmotic flow problem within a simple cavity. We also address various problems encountered during the development process and explain why such problems are raised.

Numerical Analysis of the Three Dimensional Flow in a Cavity of the Bus Engine Room (버스 엔진 룸 내 캐버터에서의 3차원 유동해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Kang, Seung-Kyu;Hwang, Yong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.82-90
    • /
    • 1999
  • Numerical analysis of the three dimensional flow in a bus engine room is carried out through this study. The radiator and the fan modeling rare carried out to simulate the flow in an engine room, and the results are focused on the flow in the cavity located in front of the radiator. The numerical simulation results are compared with the experiment . To improve the cooling performance in the bus engine room, the flow inside the cavity is inspected in detail. The complex flow features are found in this region , and the suggestion are made to improve the radiators cooling performance.

  • PDF

Finite Element Analysis of Incompressible Transient Navier-Stokes Equation using Fractional-Step Methods (Fractional-Step법을 이용한 비압축성 비정상 Navier-Stokes 방정식의 유한 요소해석)

  • Kim, Hyung-Min;Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.458-465
    • /
    • 2003
  • The main objective of the research is to develop a research code solving transient incompressible Navier-Stokes equation. In this research code, Adams-Bashforth method was applied to the convective terms of the navier stokes equation and the splitted equations were discretized spatially by finite element methods to solve the complex geometry problems easily. To reduce the divergence on the boundaries of pressure poisson equation due to the unsuitable pressure boundary conditions, multi step approximation pressure boundary conditions derived from the boundary linear momentum equations were used. Simulations of Lid Driven Flow and Flow over Cylinder were conducted to prove the accuracy by means of the comparison with results of the previous workers.

A Numerical Analysis of an Unsteady Flow in a Cavity Using an Ekman Pumping Model (에크만 분출 모델을 이용한 캐버티 내의 비정상 유동특성에 관한 수치해석)

  • 서용권;박춘근;최윤환;문종춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.102-110
    • /
    • 1997
  • A two dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically with an Ekman pumping model. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The material transport in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles. The Ekman pumping model suggested in this study was found to be satisfactory.isfactory.

  • PDF

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF