• 제목/요약/키워드: 캐니 연산

검색결과 4건 처리시간 0.02초

움직임 영역 추출 알고리즘을 이용한 자동 움직임 물체 분할 (Moving Object Segmentation Using Object Area Tracking Algorithm)

  • 이광호;이승익
    • 한국멀티미디어학회논문지
    • /
    • 제7권9호
    • /
    • pp.1240-1245
    • /
    • 2004
  • 본 논문에서는 움직임 영역의 추적 및 움직임 물체의 추출을 위한 알고리즘을 제안한다. 제안한 알고리즘에서는 카메라의 움직임이 고정되어있는 감시카메라나 비디오폰과 같은, 배경이 고정된 시스템으로 가정하였다. 제안된 움직임 영역검색 알고리즘을 이용하여 움직임부분을 먼저 찾은 후, 움직임영역 안에서 다시 움직임 물체만을 분할하는 기법을 제안하였다. 제안한 알고리즘은 노이즈에 대해 보다 강인한 특성을 가지며 움직임영역의 추적 및 추출이 효율적으로 수행되었다.

  • PDF

2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법 (A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code)

  • 박광욱;이종연
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.159-175
    • /
    • 2015
  • 2차원 QR 코드는 1차원 바코드의 데이터 용량 문제를 극복하였고, 방향성, 오류 정정, 데이터 복원력 등의 장점이 있다. 특히 2차원 바코드 인식에서 주요 이슈는 인식 속도와 정확성이다. 따라서 본 논문에서는 바코드 영역을 검출하기 위한 알고리즘을 제안하며, 제안 방법은 영상 내 관심 영역의 위치를 검출하기 위해 모폴로지 기법을 기반으로 한다. 세부적인 연구내용은 다음과 같다. 첫째, 모폴로지 닫힘(close) 연산을 통해 입력 이미지에서 QR Code의 바코드 영역을 검출한다. 둘째, 경계선 검출을 통해 바코드 영역의 외곽선들을 검출한다. 셋째, 검출된 네 개의 외곽 교차점인 네 점을 추출한 후 역 투시변환을 통하여 2차원 바코드의 정사각형 모양으로 정규화 한다. 결과적으로 본 논문의 연구결과는 다양한 조명상태이나 영상에 강한 왜곡이 있는 경우에도 좋은 성능을 나타내며, 영역 검출율은 94.8%, 인식률은 92.3%로 기존연구들보다 안정된 바코드 검출 및 인식 성능을 보여주고 있다.

에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출 (Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction)

  • 권교현;박종천;전병민
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제5권1호
    • /
    • pp.127-133
    • /
    • 2011
  • 자연영상에 내포되어 있는 문자는 다양한 내용을 표현하는 중요한 정보이다. 기존의 문자 검출 알고리즘은 영상의 복잡도와 주변의 조명, 문자와 유사한 배경색 등의 환경에서 문자영역을 검출하지 못하는 문제점이 있으므로 본 논문에서는 에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상에 포함된 문자영역을 검출하는 방법을 제안한다. 첫 번째 단계로, 명암도 영상에서 캐니에지(Canny-Edge) 검출기를 이용한 에지 성분과 형태학적 연산에 의한 지역적 최소/최대값을 갖는 연결요소를 검출하고, 각각 검출된 연결성분을 레이블링하고, 레이블링 된 각 성분에 대해 문자가 갖는 특징을 이용한 후보 문자영역을 검출한다. 마지막으로 검출된 후보 문자 영역을 서로 합병하여 하나의 후보 문자 영역을 생성하고, 후보 문자 영역의 인접성과 유사성으로 후보 문자 영역을 검증하여 최종 문자 영역을 검출한다. 실험결과 제안한 에지 및 연결요소 성분을 이용한 방법은 문자영역 검출의 정확성이 개선되었다.

대비 지도와 움직임 정보를 이용한 동영상으로부터 중요 객체 추출 (Salient Object Extraction from Video Sequences using Contrast Map and Motion Information)

  • 곽수영;고병철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1121-1135
    • /
    • 2005
  • 본 논문에서는 시공간 정보를 이용하여 동영상에서 움직이는 객체를 자동으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법은 다른 영역과 구별되는 현저한 장소에 무의식적으로 집중되는 시각주의 특성을 컴퓨터 시스템에 도입한 대비 지도(contrast map)와 중요 특징점(salient point)을 적용한 것이 큰 특징이라고 할 수 있다. 대비 지도는 밝기(luminance), 색상(color) 그리고 방향성(direction) 3가지의 특징 정보 중 자기와 방향성의 특징을 나타내는 자기 지도(luminance map)와 방향성 지도(directional map)를 결합하여 대비 지도를 생성한다. 또한, 사람이 시각적으로 볼 때 의미 있다고 생각하는 중요 특징점을 웨이블릿 변환을 이용하여 찾아낸다. 이렇게 생성된 대비 지도와 중요 특징점을 이용하여 대략적인 집중윈도우(AW:Attention Window)의 위치와 크기를 결정한다. 다음으로, 동영상의 가장 큰 특징인 움직임 정보를 추정하여 집중윈도우를 객체에 가장 근사하게 축소시키고, 윤곽선 정보를 이용하여 객체를 추출한다. 윤곽선을 추출하기 위해 캐니에지(canny edge)를 사용하였으며, 배경의 윤곽선 제거를 위하여 윤곽선의 차이(DE:Difference of Edge)를 이용하여 가로 후보영역과 세로 후보영역을 추출한다. 추출된 2개의 후보영역을 AND연산과 모폴로지 연산을 이용하여 객체를 자동으로 추출하는 방법을 제안한다. 실험은 카메라가 고정된 상태에서 촬영한 동영상에 대해 이루어 졌으며, 객체와 배경이 효과적으로 분리되는 것을 확인하였다.