• Title/Summary/Keyword: 칼륨양이온

Search Result 72, Processing Time 0.04 seconds

Soil and Morphological Characteristics of Native Zoysiagrasses by the Habitats (한국잔디류의 자생지 토양 및 생육지별 형태적 특성)

  • Lee, Sol;Yu, Han-Chun;Yoon, Byeong-Seon;Yang, Geun-Mo;Kim, Jong-Yeong;Kim, Yeong;Oh, Chan-Jin
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • This study was carried out to investigate the morphological and soil characteristics of Zoysia spp. native to South Korea. Samples [41 ecotypes of Zoysia japonica, 28 ecotypes of natural hybride between Z. japonica and Z. sinica (Junggi), 22 ecotypes of Z. sinica, and 8 ecotypes of Z. matrella] were collected in seashores, levee and summit of the rock in southern Korea. Variations in leaf width, plant height, leaf angle, length of leaf sheath, leaf trichome, stolon length, and seed shape were measured at collection sites and experimental plots. Among the entries, most of the measurements did not show any significant differences between natural and experimental plot except for leaf angle of Z. sinica and the number of seeds per spike of Z. matrella, which might be caused by different environmental conditions. Soil pH was 6.0 at the most of the collection sites. $Mg^+$ was 0.06-0.02 $cmol{_c}^+kg^{-1}$, $Mg^{2+}$ was 0.09-0.03 $cmol{_c}^+kg^{-1}$, and $K^+$ was 0.02-0.007 $cmol{_c}^+kg^{-1}$ at most zoysiagrasses growing soils.

Influence of animal wastes on the soil fertility parameters and the growth of corn (Zea mays L.) (축산폐기물(畜産廢棄物)의 이용(利用)에 관(關)한 연구(硏究) : 가축분뇨(家畜糞尿)가 토양화학성(土壤化學性) 및 옥수수 생육(生育)에 미치는 영향(影響))

  • Kim, Jeong-Je;Hong, Byong-Ju;Goh, Yong-Gyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 1991
  • This research was conducted to investigate the treatment effects of the experimental product of an oxidatively treated animal wastes such as feces of cow and pig on the growth and yield of corn, soil fertility parameters, nutrient uptake by corn, and in situ dry matter digestibility. The results are summarized as follows. (1) Growth of corn was favored by treatment of the experimental products as compared to the control. Highest yields were obtained at treatment levels of 2,000 and 2,500kg/10a for the experimental products derived from cow and pig feces, respectively. (2) The contents of soil organic matter were increased 7-41% and 4-60% with treatments of experimental products from cow and pig feces, respectively, as compared to the control. The available soil phosphorus levels were increased significantly with the treatments. Treatment of product from the cow feces resulted in a slight increase of the potassium adsorption ratio (KAR). (3) No significant difference was observed in uptake of total nitrogen and phosphorus between the treatments and the control. Uptake of cation by corn was in the order of $K_2O$ >CaO>MgO. (4) In situ dry matter digestibility ratio was increased with Incubation time. However, no significant difference in digestibility was detected for the corn samples produced by treating different levels of the experimental products.

  • PDF

Treatment of Swine Manure by Vermicomposting - Mixed Treatment of swine manure with food wastes - (Vermicomposting에 의한 돈분의 처리 -음식물 쓰레기와의 혼합처리-)

  • Lee Ju-Sam;Kim Man-Jung
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.75-84
    • /
    • 2006
  • The effects of the mixture ratios of swine manure and food wastes when vermicomposed on earthworm(Eisenia foefida) growth, the production amounts and the chemical properties of casts for plant growth media were evaluated to optimal mixture ratio. Earthworms were grown in swine manure, substituted with 0%, 20%, 40%, 60%, 50% and 100% food wastes. All of earthworm grown in swine manure substituted with 60%, 80%, and 100% food wastes died, therefore the process of swine manure substituted with 60%, 80%, and 100% food wastes by vermicomposting were impossible in this experiment. Worm cast produced from swine manure substituted with 0%, 20% and 40% food wastes after vermicomposting sufficiently contained required quantities of available phosphorus, exchangeable potassium, exchangeable magnesium, and cation exchange capacity. The survival rates of earthworm in swine manure substituted with 0% and 40% food wastes was significantly higher than those in swine manure substituted with 20%, 40% food wastes. Casts weight and proportion of casts weight in 100% swine manure were significantly higher than those in swine manure substituted with 20% food wastes, but was no significant difference between those in swine manure substituted with 40% food wastes. Therefore 100% swine manure was estimated to be superior than the others treatments. However an adequate mixture ratio of food wastes for processing mixture of swine manure by vermicomposting was estimated to be 40%. Because there was no significant difference in mean flesh weight, increasing rate, casts weight, proportion of casts weight, and reduction rate of volatile solids among 3 treatments and survival rate and conversion efficiency(CE) in swine manure with substituted 40% food wastes were significantly higher than the other treatments.

  • PDF

Effect of the Stratification of Perlite by Particle Size on the Growth and Yield of Tomato in a Recycling Hydroponics (폐쇄형 시스템에서 펄라이트 배지의 성층이 토마토의 생육 및 수량에 미치는 영향)

  • 강경희;권기범;최영하;이한철
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • The effect of vertical stratification of perlite by particle size on the growth and yield of tomato In a recycling hydroponics was examined. Vertical stratifications were composed of mixed form of small medium and large size (MP), divided forms of small and large size (smal1/1arge, DP I), and medium and large size (medium/large, DP II). Tomatoes showed higher growth in divided form, specially in DP II than DP I. Deformed fruits had higher occurrence by 17.8% in the mixed form than divided forms, while they were not significantly different between mixed forms. Root activity tended to increase during 20 days to 50 days after transplanting (DAT) in all treatments, but showed highest value at 50 DAT in DP II. After harvest electric conductivity and pH of stratified perlite were slightly higher in upper zone of DP I, but were not different in the other treatments. Mineral contents in the medium after harvest were higher in lower zone than the upper zone in MP and DP II, but vice versa in DP I.

Growth Characters and Vegetation Survey in Natural Habitat of Dicentra spectabilis (L.) Lem (금낭화의 생육특성 및 자생지 식생조사)

  • Heo, Kwon;Lee, Chae-Gon;Jang, Min-Young;Cho, Dong-Ha;Yoo, Chang-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.188-194
    • /
    • 2000
  • This study was carried out to obtain the optimum cultivation conditions of wild ornamental plant resources, Dicentra spectabilis L. The altitude of the habitat was ranged from 630m to 690m in Mt. Gujeol. Most of the habitat faced toward the northeast aspect and the gradient was ranged from 25 to 33 degrees. The light intensity of Dicentra community was 14,000lux on the average, and it was tendency to decrease by foliation of other woody plants. The appearance number of Dicentra per quadrat was 30 individuals on the average, and total appearance species in all quadrat surveyed was 52 taxa. Among them, Quercus mongolica, Lindera obtusiloba, Corylus heterophylla, Cornus controversa, woody plants, Corydalis speciosa, Pseudostellaria heterophylla, Artemisia keiskeana, Dryopteris crassirhizoma, Arisaema amurense var. serratum, Carex siroumensis, and Chloranthus japonicus, herbaceous plants, were showed as dominant species. Soil acidity in the habitat was 5.15 to 5.96, and average content of soil moisture was 32.6%. The contents of average organic matter, $P_2O_5$, K, Ca, and Mg were 1.99%, 14mg/kg, 0.55me/100g, 15.2me/100g, and 3.3me/100g, respectively. Electron conductivity was ranged from 0.50 to 0.76dS/m. Also, the average air temperature of May and June was 14.2$^{\circ}C$ and 19.4$^{\circ}C$, respectively.

  • PDF

Effect of Consecutive Application of Organic Matter on Soil Chemical Properties and Enzyme Activity in Potato Cultivation Soil (유기물 연용이 감자재배 비화산회토양의 화학성과 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Seo, Hyeong-Ho;Choi, Kyung-San;Kim, Seong-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.801-807
    • /
    • 2011
  • This study was carried out to evaluate effect of consecutive application of organic matter on soil chemical properties and dehydrogenase, acid phosphatase activity in non-volcanic ash soil during three cropping season. Organic matter mixture and organic fertilizer (MOF, $2,000kg\;10a^{-1}$), food waste compost (FWC, $2,000kg\;10a^{-1}$), and pig manure compost (PMC, 2,000, 4,000, and $6,000kg\;10a^{-1}$) were applied for each cropping season. Soil pH values were increased after three cropping season in all treatment. In the soils of the increased application of PMC, soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), and heavy metal (Zn and Cu) contents were increased. In addition, Soil dehydrogenase activity was significantly increased in proportions to PMC application rate and cropping season during potato cultivation period. The activity was two times higher in PMC ($4,000kg\;10a^{-1}$) than control after the third cropping season. Soil dehydrogenase activity was in order of PMC>FWC>NPK+PMC>MOF. Acid phosphatase activity was higher in PMC ($6,000kg\;10a^{-1}$) than other treatment. Soil Zn content and dehydrogenase activity showed linearly correlation, which were MOF ($R^2$=0.427), FWC ($R^2$=0.427) and PMC ($R^2$=0.411, p<0.01), respectively. This study demonstrated that soil chemical properties and enzyme activity could be affected greatly by consecutive application of different organic matter in the potato cultivation field.

Study on the Correlation between the Soil Properties and Albiflorin, Paeoniflorin Contents of Paeonia lactiflora Pall. (작약의 Albiflorin, Paeoniflorin 함량과 토양특성 간의 상관관계 연구)

  • Eo, Hyun Ji;Park, Youngki;Park, Gwang Hun;Kim, Ji-Ah;Kim, Da Som;Kang, Yeongyeong;Kim, Kiyoon;Jang, Jun Hyuk;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.384-394
    • /
    • 2021
  • The aim of this study was to investigate the correlation between soil properties and marker compounds contents of Paeonia lactiflora. The methods of determining marker compounds were validated by measuring the linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and recovery using UPLC analysis. P. lactiflora contained albiflorin at 0.04 ± 0.00 ~ 2.79 ± 0.21%, paeoniflorin at 1.98 ± 0.14 ~ 6.67 ± 0.84%. The root dry weight (RDW) of P. lactiflora was 0.06 ± 0.02 ~ 1.27 ± 0.28 kg. The soil properties analysis such as soil pH, electric conductivity (EC), organic matter (OM), total nitrogen (TN), available phosphate (Avail. P2O5), exchangeable cation and cation exchange capacity (CEC) were performed following standard analysis manual. The results of correlation analysis between soil properties and growth characteristics, available P2O5 was positively coreelated with the RDW of P. lactiflora. On the other hand, the RDW of P. lactiflora showed significantly negative correlation with contents of albiflorin and paeoniflorin. The results of this study was might be help to provide useful information on the establish of standard cultivation by the investigate correlation analysis between growth characteristics and marker compound contents of P. lactiflora.

Long-term Changes in Soil Chemical Properties in Organic Arable Farming Systems in Korea (작물의 지속적인 유기 재배가 토양의 이화학적 특성변화에 미치는 영향)

  • Lee, Yun-Jeong;Choe, Du-Hoi;Kim, Seung-Hwan;Lee, Sang-Min;Lee, Yong-Hwan;Lee, Byung-Mo;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.228-234
    • /
    • 2004
  • In organic farming, nutrients for the crop production are mostly supplied by compost containing various organic materials. The long-term organic cultivation would result in continuous changes of soil chemical properties and fertility. The aim of this study was to investigate the contribution of long-term organic cultivation to the soil fertility in Korea focusing on the chemical properties of soil. Soil samples were collected from organic farms that had been cultivated for 8-10 years after certification of organic product through the conversion periods of 2-3 years. Thereby each organic farm had acquired optimal cultivating techniques and soil condition. We separated organic farms into three groups by cultivating crops, i.e. leaf vegetables, fruit vegetables and fruit trees. In each group, five representative farms were chosen in order to investigate the relationships between application rate of compost and nutrient contents in soil. The application rate of compost was approximately $10-15Mg\;10a^{-1}$ for the first 2-3 years at the beginning of organic farming and then reduced to a rate of $3-4Mg\;10a^{-1}$ after stabilization of organic matter content in soil with $30-50g\;10a^{-1}$. However, the continuous organic farming for 8-10 years resulted in accumulation of nutrients, especially of P, in soil probably due to the excessive amounts of compost applied. In conclusion, we suggest that the application rate and organic sources of compost should be decided on the basis of P content in soil by soil testing and thereafter the lack of soil N content for crop cultivation should be compensated by crop rotation with such as legumes. This might be an approach to the original meaning of organic farming as an environmental friendly agriculture.

Optimum Fertilization Based on Soil Testing for Chinese Cabbage Cultivation in Plastic Film Houses (시설재배지 토양 검정에 의한 배추의 적정 시비량)

  • Hong, Soon Dal;Kang, Bo Goo;Kim, Jai Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of Chinese cabbage in plastic film house, twenty soils which contain different salts contents were taken from 4 different area of plastic film house cultivation, Youngdong. Boeun county, Cheongweon county, and Cheongju city. The dry weight and the amount of N. P, and K uptakes of Chinese cabbage in the plot of no fertilization were considered as the factors representing the fertility of the soil. And a difference of dry weight and the amounts of N, P, and K uptakes of plants between the plot of fertilization and no fertilization were considered as the factors representing the total effect of fertilizer and fertilizer N, P, and K effects. respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with soil tests in order to find the critical levels and recommended method for optimum fertilization of Chinese cabbage. Chinese cabbage transplanted in two soils, having the electrical conductivity of 9.3 and 15.2 dS/m, were not able to root due to the salts toxicity. The content of inorganic N, the electrical conductivity, and CEC were founded to have significant correlation with the factors of both the soil fertility and fertilizer effects for the cultivation of Chinese cabbage. To determine the weighting degree for the productivity and the fertilizer effects, the standardized partial regression coefficient was analyzed by regression among the factors of fertility, the fertilizer effects, and the soil tests. The coefficient for inorganic N($NH_4-N$ and $NO_3-N$) was obtained as the absolute value of 756-1871 and this value was extremely higher than those of other soil tests which was 0.07-4.11. These results suggested that the content of inorganic N is the best tests for the estimation of the productivity and the fertilizer effects for the cultivation of Chinese cabbage in plastic film house. The critical level of inorganic N($NH_4-N+NO_3-N$) estimated by Cate-Nelson split method for maximum productivity and zero point of fertilizer effect was 220 mg/kg for all the factors of estimation. These results suggested that no application of fertilizer N. P, and K is required at the critical level of inorganic N of soil. Consequently the optimum application of fertilizer N, P, and K for the cultivation of Chinese cabbage in plastic film house was possible to determine by the critical level of inorganic N of soil. The critical level of electrical conductivity was estimated as 2.8 dS/m by the same method.

  • PDF

Changes of Pepper Yield and Chemical Properties of Soil in the Application of Different Green Manure Crops and No-Tillage Organic Cultivation (무경운 유기재배에서 녹비작물별 고추의 수량과 토양 화학성 변화)

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Yong-Soon;Kim, Sun-Kook;Lim, Kyeong-Ho;Choi, Kyung-Ju;Lee, Jeong-Hyun;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.255-272
    • /
    • 2011
  • This work studied the growth and yield of green crops, changes of mineral composition in greenhouse soil and green crops, and infection with wintering green crops cultivation in greenhouse field. At 74 days after seeding of wintering green crops, dry matter was 710kg/10a in rye, 530kg/10a in barley, 230kg/10a in hairy vetch, and 240kg/10a in bean or weeds. Total nitrogen content in green crops was 4.5% in pea and hairy vetch, and 3~4% in barley and rye. $P_2O_5$, CaO, and MgO contents in all green crops were about 1.0%, and $K_2O$ content was the highest level by 4~5% among macro elements. Total nitrogen fixing content in shoot green crops uptaken from soil was 22.1kg/10a in rye, 20.6kg/10a in barley, 10.6kg/10a in hairy vetch, and 9.6kg/10a in pea and giant chickweed. $P_2O_5$ fixing content in shoot green crops uptaken from soil was 8.4kg/10a in rye, 6.3kg/10a in barley, and 2.3 kg/10a in hairy vetch and pea. $K_2O$ fixing content in shoot green crops uptaken from soil was 28kg/10a in rye, 24.7kg/10a in barley, and 11kg/10a in hairy vetch and pea. CaO fixing content in shoot green crops uptaken from soil was 2~3kg/ 10a in all green crops, and MgO fixing content was 1.7~2.6kg/10a in all green crops. Pepper growth in no-tillage was not a significant difference at all green manure crops. The number of fruit and fruit weight were higher in control, pea, hairy vetch and harvest barley than rye and barley. Soil mineral compositions in wintering green crops increased at pH, organic matter, CEC compared with control. Soil chemical compositions were stable level at green crops cultivation according as decreases of EC, available phosphoric acid, Ca, and Mg contents. After no-tillage by green manure crops, pH in soils was higher in green manure crops than control. EC content in soils was lower in green manure crops than control, and was remarkably low level in barley harvest. Organic matter content in soils increased in hairy vetch and barley green manure but decreased by 35% in barley harvest. Total nitrogen and avaliable $P_2O_4$ content in soils remarkably increased but was not a significant difference at all green manure crops. Cation (K, Ca, and Mg) content in soils decreased by 15~20% in K, 2~11% in Ca, and 3~6% in Mg at rye, barley and pea compared with control.