• Title/Summary/Keyword: 칵핏

Search Result 6, Processing Time 0.02 seconds

자동차 내장부품 칵핏 모듈의 BSR 현상과 시험동향 및 개선과제

  • Go, Jong-Hyeon;Lee, U-Il
    • Journal of the KSME
    • /
    • v.52 no.1
    • /
    • pp.41-44
    • /
    • 2012
  • 이 글에서는 운전자의 감성적인 부분에 크게 영향을 미치는 이음에 대해 사전 품질 만족을 시키기 위한 많은 연구들을 수행하고 있고 이에 따른 관련 부품 업체의 사전 검증시스템을 강화시키고 있다. 그래서 이번 자동차 내장부품의 핵심인 칵핏 모듈의 이음 평가 방법 소개 및 BSR 현상에 따른 대처방안 및 앞으로의 과제에 대하여 기술하려 한다.

  • PDF

A Reconfigurable Mixed-Model Assembly System of Cockpit Module using RFID/ZigBee Protocol (RFID/ZigBee 프로토콜을 활용한 가변구조 혼합형 모델 칵핏모듈 조립생산 시스템)

  • Koo, Ja-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8940-8947
    • /
    • 2015
  • Mixed-model assembly line has been widely used in automotive assembly industry to quickly respond the diverse product demands. But, this model can lead to part confusion, which is a source for assembly errors when parts are physically interchangeable in a mixed-model assembly line. With the recent application of new technologies such as radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) to the assembly process, real-time information has become available in this manufacturing systems through IT infrastructures. At first, this paper presents an RFID application for assembly processes, specifically, for a mixed-model assembly line. Thus, to ensure that parts be picked accurately, each cockpit module on the assembly line is attached with a RFID tag and the tag is scanned using a RFID reader and recognizes the vehicle, and each part of the cockpit module is attached with a barcode and the barcode is scanned by a barcode reader and each part is identified correctly for the vehicle. Second, this paper presents a ZigBee wireless sensor network (WSN) protocol-based application for a reconfigurable mixed-model assembly line of cockpit module to reduce the assembly errors and the cost of the change/reconfiguration on the assembly lines due to the various orders and new models from the motor company, avoiding the wiring efforts and inconvenience by wiring between the several RFID devices and the IT server system. Finally, we presents the operation results for several years using this RFID/ZigBee wireless sensor network (WSN) protocol-based cockpit module assembly line.

Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit (칵핏 흡차음 성능 예측을 위한 Virtual SEA 의 활용)

  • Jeong, Won-Tae;Ko, Chang-Sung;Park, Hyung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.903-912
    • /
    • 2007
  • One of the crucial factors which determine the quality and the accuracy of SEA model is how subsystems are defined. Experimental SEA technique had been a unique way to divide entire systems accurately for mid-frequency range, until FEA based virtual FRF response technique, virtual SEA method presented. Virtaul SEA has been developed for predictive SEA tool in early design process. In this study, Modal analysis results from modified crash FE model is used for Statistical transfer matrix. Observation nodes on the cockpit are grouped by attractive substructuring method based on point to point transfer and correlation matrix. Complex cockpit structure is divided into subsystems by automatic substructuring. Comparison with experimental SEA results validates the application of Virtual SEA to cockpit.

  • PDF

An Experimental Approach for Characteristic Rattle Noise Considering the Deterioration Condition of Cockpit Module Materials in the Vehicle (자동차 칵핏 모듈용 시편 소재의 열화 조건을 고려한 이음(Rattle) 발생 특성에 관한 시험적 고찰)

  • Yang, Jeongmin;Yi, Chulhyun;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.796-799
    • /
    • 2014
  • It is treated more seriously than ever as the customer requirements are becoming a high-quality and diversification. Among the various elements to affect customer's evaluation of automobile quality, BSR(buzz, squeak, rattle noise) are considered to be a mostly contributing factor. Rattle Noises in cockpit modules are one of the major concerns mentioned above. Recently, measurements of the BSR noise between the parts that make up the products from the perspective that the structural causes. For structures that make up material has not been any consideration of the BSR noise characteristics. The aim of this study is to clarify the characteristics of noise occurrence in vehicle cockpit module that consist of plastic material after measuring noise by rattle special testing instrument.

  • PDF

Dynamic Characteristics of Plastic Materials for Automobile Cockpit Module (자동차 칵핏 모듈용 플라스틱 소재의 열화 동특성 평가)

  • Woo, Chang Su;Park, Hyun Sung;Jo, Jin Ho;Kim, Ji Hoon;Choi, Ju Ho;Kim, Yeoung Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1585-1590
    • /
    • 2012
  • Engineering plastics are used in instrument panels, interior trim, and other vehicle applications, and the thermomechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the temperature effects. Viscoelastic properties such as the glass transition temperature and storage modulus and loss factor under temperature and frequency sweeps were measured. The data were compared with the original ones before aging to analyze the behavior changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

Experimental Study of being vehicle cockpit module BSR Noise considering the deterioration condition of the module unit (모듈 단위 열화조건을 고려한 자동차용 칵핏 모듈 이음(BSR Noise)에 대한 시험적 고찰)

  • Yi, Chulhyun;Yang, Jeongmin;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.791-795
    • /
    • 2014
  • In this paper, in order to impart the aging condition of the parts, by configuring the cycle of temperature from low temperature was performed by applying the aging conditions for vehicle cockpit module. The reason for the selected modules of the cockpit vehicle parts, because the joint occurrence typical components of the room component is a first module and ceiling cockpit module. After setting the excitation profile using the BSR exciter only that this is for the module degradation after the initial and grasp the change in the dynamic characteristics of the modules based on the before and after deterioration may be made in the module, grasp the noise generating position I measured the noise and proximity. Was also visualized on the position of the joint is generated using a sound camera to objective results occurring where the joint is selected through subjective evaluation.

  • PDF