• Title/Summary/Keyword: 카보후란

Search Result 7, Processing Time 0.03 seconds

In vitro metabolism of carbofuran in resistant and susceptible brown planthoppers, Nilaparvata lugens $St{\aa}l$ (저항성 및 감수성 벼멸구 체외에서의 카보후란 대사)

  • Yoo, Jai-Ki;Ahn, Yong-Joon;Shono, Toshio;Lee, Si-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 1998
  • 벼멸구의 카보후란에 대한 저항성 기작을 구명하기 위해 실내에서 카보후란으로 30세대 도태하여 얻은 저항성계통($LD_{50};\;20.3{\mu}g/g$)과 약제를 12년 동안 처리하지 않은 벼멸구 감수성 계통($LD_{50};\;0.3{\mu}g/g$)을 완충용액과 마쇄하여, 105,000g에서 2시간 원심분리하여 얻은 상등액(에스테라제층)과 침전물(P450-산화효소층)을 효소액으로 하여 $^{14}C$-카보후란을 반응시켜 계통 간 대사물 량의 차이를 조사한 바 저해제(piperonyl butoxide; 산화효소저해제, diethylmalate; 글루타치온 전이효소 저해제, iprobenfos; 에스테라제 저해제)와 보조인자 (NADPH; P-450 산화효소, 글루타치온; 글루타치온전이효소)에 상관없이 카보후란의 대사물과 그 양이 계통간 차이가 없었다. 이상의 결과로부터 저항성 벼멸구에서 일반적으로 곤충에서 생화학적 저항성 기구로 잘 알려진 가수 분해 효소의 일종인 에스테라제와 p-450 산화효소, 글루타치온 전이효소의 활성 증가가 저항성 발달에 관여하지 않음을 알 수 있었다.

  • PDF

In vivo metabolism of carbofuran in resistant and susceptible brown planthoppers, Nilaparvata lugens $St{\aa}l$ (저항성 및 감수성 벼멸구 체내에서의 카보후란 대사)

  • Yoo, Jai-Ki;Ahn, Yong-Joon;Shono, Toshio;Lee, Si-Woo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1998
  • This study was conducted to find out the biochemical or metabolic resistance mechanism of brown planthopper (BPH) to carbofuran. Differences between resistant ($LD_{50};\;20.3{\mu}g/g$) and susceptible strains($LD_{50};\;0.3{\mu}g/g$) were shown. The amounts of carbofuran metabolite, benzofuranol, and the origin, not developed by Thin Layer Chromatography, were much more in the susceptible strain. But the mother compound, carbofuran, was much more in the resistant strain. The tendencies of metabolism one and three hours after treatment were similar in both strains except for the amounts of metabolites described above. From the study, it is supposed that hydrolytic enzyme, esterase, changes its role from cleaving the esteric bond of carbofuran to making conjugates with carbofuran. This seems to be the main resistance mechanism of BPH to carbofuran. Oxidase and transferase may play little or no role in resistance mechanism. Oxidative and transferring enzymes gave no effects on the metabolism of carbofuran in the resistant strain compared with the susceptible strain.

  • PDF

Development of Electro-Biosensor for the Residual Pesticides using Organic Carbon and Cobalt Phthalocyanine (Cobalt Phthalocyanine 탄소유기 전극을 이용한 농약 잔류량 측정 센서개발)

  • Yu, Young-Hun;Cho, Hyung-Jun;Park, Won-Pyo;Hyun, Hae-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.72-76
    • /
    • 2010
  • We have developed the bio-electrode measuring the variance of the amount of acetylcholine affected by residual pesticide. The working electrode of the biosensor was made by combination of cobalt phthalocyanine and carbon organic compounds. The biosensors were constructed by screen-printing method. The principle of working electrode is similar to thiocholine sensor. We have fabricated the biosensor using standard screen printing method. Generally, the biosensor made by printing method formed thick film biosensor. When the electrodes were made by electrochemical cells, the generation of current by the addition of enzyme substrate was inhibited by standard solutions of organo-phosphate pesticides. The detection limit of sensor is about 0.5 $\mu{g}/L$ for carbofuran. We could improve the responsibility of the sensor by controlling the cobalt phthalocyanine and thiocholine concentration ratio. Also we have tested the EPN and Chlorpyrifos pesticides and found that the biosensor is applicable to fast determination of residual pesticides.

Monitoring and risk assessment of pesticide in school foodservice products in seoul, Korea (서울지역 학교급식 식재료의 잔류농약 위해성 평가)

  • Seo, Young-Ho;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • We tested for residual pesticide levels in school foodservice agricultural products in Seoul, Korea from 2010 to 2012. A total of 316 samples of 23 different types of agricultural products were analyzed via gas chromatography-nitrogen phosphate detector (GC-NPD), an electron capture detector (GC-${\mu}ECD$), a mass spectrometry detector (GC-MSD), and a high performance liquid chromatography-ultraviolet detector (HPLC-UV). We used multi-analysis methods to analyze 185 different pesticide types. Among the selected agricultural products, residual pesticides were detected in 26 samples (8.2%), of which 6 samples (1.9%) exceeded the Korea Maximum Residue limits (MRLs). We detected pesticide residue in more than 65% of the Chwinamul, while 6 among 9 analyzed samples contained pesticide residue, and 1 sample exceeded the Korea MRLs. Among the 185 kinds of pesticides that we have tested, 18 were detected, while 7 of them were detected more than twice. Data obtained were then used for estimating the potential health risks associated with the exposures to these pesticides. The most critical commodity is carbofuran in the perilla leaves, which has contributed 3.8% to the hazard index (HI). These results showed that the detected pesticides could not be considered as a serious public health problem. Nevertheless, constant supervision is recommended.

A Systematic Application of Insecticides to manage Early Season Insect Pests and Migratory Planthoppers on Rice (본논초기 해충군과 비래성 멸구류의 밀도억제를 위한 살충제의 체계적 처리에 관한 연구)

  • 배윤환;이준호;현재선
    • Korean journal of applied entomology
    • /
    • v.33 no.4
    • /
    • pp.270-280
    • /
    • 1994
  • This study was conducted to establish a nce insect pest control system, ~ es.ys tematic application of insecticides using carbohran and buproiezin, in Korea. The effects oi various dates of application and rates of buprofezin (25% WP) after carbofuran (3G) soil incorpombon in late May on the pop~~lation densities of the brown planthoppa (BPH) immigrating in July were investigated Appropriate application tune of buprofezin for the BPH that had evaded insecticidal effect of 5011 incorporated carbofuran was late July-early August. Application rate of buprofezln at 7.0g a.i/lOa was enough to suppress the BPH density. Buprofezin treatment after carbofumn soil incorporation could also suppress the whlte backed planthopper population but did not affect the densities oi the paddy rice spiders. Considering the charactenstics of occurring patterns of the nce insect pests in Korea. buprofezin treatment m late July or early August after carbofuran soil incorporation in late May can be a useful application system of ir~sectic~deins controlling early season Insect pests and migmtoly planthoppers on rice.

  • PDF

Sensing of the Insecticide Carbofuran Residues by Surface Plasmon Resonance and Immunoassay (표면플라즈몬공명과 효소면역분석법을 이용한 살충제 카보후란 잔류물 검출)

  • Yang G. M.;Cho N. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.333-339
    • /
    • 2005
  • The pesticide is raising public interest in the world, because it causes damage to an environmental pollution and the human health remaining agricultural products and an ecosystem, in spite of the advantages. Particularly, each country restricts the residual pesticide and induces observance about the safety and usage standard so that they can control the amount of pesticide used and defend the safety of agricultural products. The habitual practice for the analysis of the residual pesticide depends on GC (gas chromatography), HPLC (high performance liquid chromatography) and GC/MS (gas chromatography/mass spectroscopy), which triturate the fixed quantity of samples, abstract and purify as a suitable organic solvent. These methods have the highly efficient in aspects of sensitivity and accuracy. On the other hand, they need the high cost, time consuming, much effort, expensive equipment and the skillful management. Carbofuran is highly toxic by inhalation and ingestion and moderately toxic by dermal absorption. As with other carbamate compounds, it is metabolized in the liver and eventually excreted in the urine. The half-life of carbofuran on crops is about 4 days when applied to roots, and longer than 4 days if applied to the leaves. This research was conducted to develop immunoassay for detecting carbofuran residue quickly on the basis of surface plasmon resonance and to evaluate the measurement sensitivity. Gold chip used was CM5 spreaded dextran on the surface. An applied antibody to Immunoassay was GST (glutathione-s-transferase). The association and the dissociation time were 176 second and 215 second between GST and carbofuran. The total analysis time using surface plasmon resonance was 13 minutes including regeneration time, on the other hand HPLC and GC/MS was 2 hours usually. The minimum detection limit of a permissible amount for carbofuran in the country is 0.1 ppm. The immunoassay method using surface plasmon resonance was 0.002 ppm.

Effects of Carbofuran Soil Incorporation on the Early Occurring Rice Insect Pests and the Brown Planthopper (본논초기해충군과 벼멸구에 미치는 Carbofuran 토양혼화처리의 영향)

  • 배윤환;이준호;현재선
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.536-542
    • /
    • 1992
  • Control effects of carbofuran soil incorporation just before transplanting on the early occur-ring rice insect pests were studied in the rice field. Also, its residual effects on the brown planthopper (BPH) were studied by pot experiments. Carbofurn soil incorporation in late May was much more effective in controlling the early occurring rice insect pests such as small brown planthopper, green leafhopper and rice stem borer than carbofuran broadcasting or diazinon (3G) + BPMC (50% EC) treatment in mid June. Residual effects of carbofuran soil incorportaion on the female adult BPH decreased ca. a half one month after treatment. However, its residual effects on the next generation of the BPH lasted much longer; control effects on the next generation were above 90 and 70% on 37 and 46 days after treatment, respectively. From these results, it is thought that carbofuran soil incorporation just before rice transplanting can be a good control method to the early occurring rice insect pests and the brown planthopper immigrating during June. Also, it can suppress immigrating BPH popula¬tion moderately in early July.

  • PDF