• Title/Summary/Keyword: 카메라 위치 추정

검색결과 291건 처리시간 0.02초

스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템 (Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone)

  • 박종진;최규석;천창희;박인규;강정진
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.207-214
    • /
    • 2011
  • 본 논문에서는 Zigbee 기반 무선센서네트웍과 레고 마인드스톰 NXT 모듈을 이용하여 이동로봇의 원격주행제어시스템을 개발하였다. 기존 회전센서(encoder)에 의한 이동로봇 위치제어의 오차 문제(미끄러짐 등)를 해결하고 좀 더 정확하게 이동로봇을 제어하기 위해 본 논문에서는 무선센서네트웍상의 초음파모듈을 사용하였다. 초음파의 문제점인 직진성과 협소한 감지범위의 단점을 극복하기 위해 이동로봇에 부착된 이동 노드를 360도 회전시킴으로써 4개의 고정 노드로부터 각각의 거리를 측정하여 삼각측량법에 의해 로봇의 정확한 위치를 추정하였다. 또한 이동로봇의 전면에 부착된 USB 웹 카메라를 사용하여 스마트폰으로 영상이 송신되도록 하였다. 그 결과 스마트폰을 통해 로봇의 위치와 이동로봇의 주변상황을 확인함으로써 이동 로봇을 정확하게 제어할 수 있었다.

돼지의 빠른 자세 결정과 머리 제거를 위한 영상처리 및 딥러닝 기법 (Image Processing and Deep Learning Techniques for Fast Pig's Posture Determining and Head Removal)

  • 안한세;최원석;박선화;정용화;박대희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.457-464
    • /
    • 2019
  • 양돈 업계에서 돼지의 무게는 돼지의 건강이나 성장 상태, 출하 여부, 사육 환경, 사료 배급을 결정하는 주요 요인 중 하나이며, 따라서 돼지의 무게를 측정하는 것은 돼지의 생산성 측면에서 중요한 문제이다. Top-view 카메라에서 획득한 영상으로부터 돼지의 픽셀 수를 이용하여 돼지의 무게를 추정하고자 할 때, 정확한 픽셀 수 측정에 영향을 주는 돼지의 자세를 결정할 필요가 있으며, 픽셀 수 측정에 영향을 주는 머리부분을 제거할 필요가 있다. 본 논문에서는 빠른 영상처리 기법을 이용하여 돼지의 자세를 빠르게 결정하고, 딥러닝 기반의 빠른 객체탐지 기법인 YOLO를 이용하여 돼지 머리 위치를 파악한 후, 경량화된 영상처리 기법을 이용하여 돼지의 머리와 몸통 경계를 획득하고 머리를 제거하는 방법을 제안한다. 즉, 빠른 영상처리 기법으로 이진화된 돼지의 영상 데이터에서 돼지의 몸통 중심점으로부터 돼지의 외곽선까지의 길이를 비교하여 돼지의 자세를 결정한다. 또한, 돼지의 머리 위치를 탐지하기 위하여 YOLO를 이용하여 영상 데이터 내의 돼지의 머리, 몸통, 엉덩이의 위치를 학습시킨 후, 곧은 자세의 돼지 머리 위치를 획득하고 머리 바깥 영역을 제거한다. 마지막으로 Convex-hull을 이용하여 돼지의 머리와 몸통 경계를 추정한 후, 머리를 제거한다. 실험 결과, 0.98의 정확도와 250.00fps의 수행속도로 돼지의 자세를 결정하였으며, 0.96의 정확도와 48.97fps의 수행속도로 돼지의 머리탐지 및 제거가 가능함을 확인하였다.

쥐불놀이 (논둑태우기)가 해충 및 천적상에 미치는 영향 (Influence of the Levee-burning on the Fauna of Insect Pests and Their Natural Enemies)

  • 김홍선;이영인;이해빈
    • 한국응용곤충학회지
    • /
    • 제29권3호
    • /
    • pp.209-215
    • /
    • 1990
  • 녹둑태우기가 벼해충 및 천적밀도에 미치는 영향을 확인하기 위향 1987년 2월 20일 수원시 서둔동에 위치한 시험포장의 논둑$(72\times1m)$에서 불태운 곳과 태우지 않은곳에서의 해충 및 천적밀도를 조사한 결과 불태운 직후에는 논뚝이다 그 주변에 해충(주로 애멸구약충)도 천적(주로 거미류)도 하나도 없었다. 불태운 후 약 60일이 지난뒤에는 식생과 동물상이 서서히 회복되기 시작하여 불태우지 않은 곳에 비하여 불태운 곳의 초생이 왕성하여졌고 75일이 지난뒤 (5월 상순)에는 해충과 천적의 밀도가 높아졌다. 해충이나 천적밀도를 회복시킨 개체들은 모두 가까운 주변으로부터 확산 되어 온 것으로 추정되며 만일 불태운 면적이 훨씬 더 넓었을 경우에는 곤충류의 밀도회복에 더 긴 시간이 필요할 것이며 날개가 없는 거미류는 날개가 있는 해충류보다 밀도회복에 더 오랜 시간이 필요할 것으로 생각된다. 황산적거미는 $9^{\circ}C$에서 섭식활동이 이루어지는 것으로써 일반 해충류(특히 애멸구)보다 발육임계온도가 낮으므로 이른봄의 영야요구도가 높을 것으로 추정되며 아울러 불태운곳에서 살아남을 확률이 일반 해충류보다 낮을 것으로 생각된다. 쥐불놀이(음력 정월 대보름)를 하는 날짜가 해에 따라 대부분의 차이는 있으나 일반적으로 논둑에서 월동하는 절족동물중 해충류보다 천적류(거미류)의 발육임계온도가 낮기 때문에 쥐불놀이에 의한 천적류의 사망율이 해충류보다 높을 거승로 추정되므로 추후 대규모 시험이 필요할 것이나 현재의 입장에서 볼때 쥐불놀이가 논둑이나 제방에서 월동하는 해충류의 방제에 공헌할 것이라는 논리를 학문적으로 정당화 시키기에는 근거가 미약한 것으로 생각된다.부의 flux를 나타냈다.껍질에서만 검출되었다. $\delta_A=0.30$ 이 값은 A, B자리 모두 $Fe^{3+}$에 해당된다.라 수집하는 것이 최선의 망 운영방법이다. 자동관측시스템(AWS) 설치 시 기존의 무인감시카메라와 무선중계탑을 최대한 활용하되 무인감시카메라 설치위치$(70\siml,245m)$와 무선중계탑의 설치위치 $(299\sim1,573m)$가 산불위험지역에 포함되어 있는지의 면밀한 검토가 요구된다. 산불 등 각종 산림재난 방지와 관련한 정보를 얻을 수 있는 자동기상관측시스템(AWS)의 설치 위치는 산불발생확률모형에서 산정된 위험지역 내에 설치하는 것이 산불발생 위험지역을 판정하는데 매우 효과적일 것으로 판단된다. 기상청과 지자체가 보유하고 있는 기상관측 장비들은 대부분 도시를 중심으로 설치 운영되고 있어 산림 또는 산악에 설치된 기상관측 장비의 수는 적은 편이다. 따라서 산림과 산악에 기상관측 장비의 보강은 필수적이다. 관측망 구성은 기상청의 관측 표준(안)을 준수하며, 설치 지점의 특성에 따라 가장 경제적인 방법을 선택하는 것이 바람직하며, 특히 장비구매 설치 시 다양한 종류의 제품을 선택하는 것은 차후 장비 관리에 어려움을 겪을 소지가 있어 가능한 우수한 제품을 선택하되 동일 제품 사용을 권장한다. 따라서 위의 망구축이 이루어져 현재 기상청이 설치 운영하고 있는 측정 장비에 의해 취득한 기상자료를 공동 활용하여 표출하면 더욱 상세한 자료의 획득과 활용이 기대되어 진다. 또한, 금번 논문에서는 산불위험지역의 격자점(15km)내에 최소한 1대의 AWS 설치방안을 제시하였지만, 금후에는 15km내에서도

  • PDF

유클리디안 척도를 이용한 차량 추적 (Vehicle Tracking using Euclidean Distance)

  • 김규영;김재호;박장식;김현태;유윤식
    • 한국전자통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1293-1299
    • /
    • 2012
  • 본 논문에서는 실시간 차량 검출 및 차량 추적에 대한 알고리즘을 제안한다. 차량 검출은 도로에 설치된 고해상도 CCTV 카메라 영상에 대해 가우시안 혼합모델과 수학적 형태학 처리를 통하여 수행한다. 차량 추적은 검출한 차량 객체를 기반으로 영상 프레임 간 유클리디안 척도를 이용하여 수행한다. 보다 상세히 언급하면, CCTV 카메라로부터 입력되는 영상으로부터 가우시안 혼합모델을 이용하여 배경을 추정하고, 배경영상과 입력영상의 차영상으로부터 객체를 분리한다. 분리된 후보 객체를 수학적 형태학 처리를 통하여 재구성한다. 터널에서의 차량의 위치에 따른 크기 특징을 분석하여 최종적으로 차량을 검출한다. 차량 추적은 입력되는 영상 프레임간 객체들의 유클리디안 거리 정보를 활용한다. 터널에서 촬영한 영상을 이용한 시뮬레이션을 통하여 제안하는 차량 추적방법이 효과적으로 적용할 수 있음을 확인하였다.

시차의 신뢰도를 이용한 플렌옵틱 영상의 초고해상도 복원 방법 (Super-resolution Reconstruction Method for Plenoptic Images based on Reliability of Disparity)

  • 정민창;김송란;강현수
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.425-433
    • /
    • 2018
  • 본 논문에서는 시차의 신뢰도를 기반으로 플렌옵틱 영상의 초고해상도 복원 알고리즘을 제안한다. 그리고 플렌옵틱 카메라 영상으로부터 생성한 서브어퍼처(sub-aperture) 이미지는 TV_L1알고리즘에 기반한 시차 추정과 초고해상도 영상 복원에 활용된다. 특히 제안된 알고리즘은 시차가 부정확하게 나타날 수 있는 경계 역역에서 향상된 성능을 보인다. 시차 벡터의 신뢰도는 서브어퍼처 이미지의 상하좌우 각 위치별 영역에 따른 분산을 고려하여 판단한다. 신뢰도가 낮은 시차벡터는 초고해상도 영상 복원시 제외된다. 제안된 방법은 바이큐빅 보간 방법과 기존의 시차기반방법 그리고 사전기반 방법과 비교하여 평가되었다. 성능 평가에서 초고해상도 영상복원의 결과는 PSNR, SSIM 관점에서 성능을 비교하여 최상의 성능을 보여준다.

스마트폰을 이용한 실시간 표면영상유속계 개발 (Development of a real-time surface image velocimeter using an android smartphone)

  • 류권규;황정근
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.469-480
    • /
    • 2016
  • 본 연구는 안드로이드 기반의 스마트폰을 이용한 실시간 표면영상유속계를 개발하는 것이다. 스마트폰이 내장한 카메라, GPS, 방향 센서, CPU를 활용하여, 실시간으로 현장에서 하천의 표면유속을 측정하는 것이다. 먼저, 스마트폰의 GPS를 이용하여 측정 현장의 위치를 파악하고, 경사계(방향 센서)를 활용하여 카메라와 촬영면의 기하적인 관계를 설정한다. 이 때 입력해야 할 유일한 변수는 수면과 카메라의 연직 높이뿐이다. 내장된 카메라로 정해진 시간만큼 동영상을 촬영한다. 촬영된 동영상을 개방 소스의 영상처리 라이브러리인 OpenCV를 이용하여 프레임별로 분할하고, 이를 시공간 영상 분석하여 하천 표면의 2차원 유속장을 추정한다. 시판되는 안드로이드 스마트폰에 적용하여 현장 시험한 결과 약 11초에 1회의 순간유속 측정 (1초간의 평균유속 측정)을 할 수 있어, 현장에서 즉각적으로 하천 수표면의 표면유속을 측정할 수 있었다. 또한 이 순간유속을 수십회 반복한 뒤 평균하여 시간평균유속을 구할 수 있었다. 개발된 시스템을 실험 수로에서 시험한 결과, 측정이 매우 효과적이며 편리하였다. 측정된 결과를 프로펠러 유속계에 의한 측정값과 비교한 결과, 최대 오차 13.9%, 평균적으로 10 % 이내의 오차로 실험 수로의 표면 유속을 측정할 수 있었다.

동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템 (Augmented Reality System using Planar Natural Feature Detection and Its Tracking)

  • 이아현;이재영;이석한;최종수
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.49-58
    • /
    • 2011
  • 일반적으로 사용되는 마커 기반의 증강현실 시스템은 카메라 입력영상 내에 마커가 항상 존재해야 한다는 제한 때문에 사용자의 접근에 불편을 준다. 때문에 최근 배경 영상에서 취득할 수 있는 객체를 자연 마커로 생성한 시스템이나 배경 영상의 특징을 이용해 기하학적 지도를 작성하여 가상의 객체 정합에 이용한 증강현실 시스템들이 관심을 끌고 있다. 본 논문에서는 카메라 입력 영상에서 동일 평면상에 존재하는 특징들을 검출하고, 이를 추적함으로써 카메라 위치 정보를 추정하는 증강현실 시스템을 제안한다. 또한 특징점 추적에 사용된 추적 방법은 카메라에서 취득한 영상 밖으로 특징점이 벗어날 경우 더 이상 추적할 수 없는 문제점을 가지고 있어, 이를 보완하기 위해 새로운 특징점을 재검출하여 객체의 정합을 유지하는 방법도 제시한다. 제안된 방법은 미리 지정된 마커를 사용하지 않기 때문에 사용자의 접근이 편리하고, 특정한 형태의 마커를 사용하지 않는 다른 시스템보다 비교적 간단하게 구현할 수 있어 다양한 모바일 환경에서 유용하게 이용될 수 있다.

시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법 (SLAM Method by Disparity Change and Partial Segmentation of Scene Structure)

  • 최재우;이철희;임창경;홍현기
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.132-139
    • /
    • 2015
  • 카메라를 이용하는 시각(visual) SLAM(Simultaneous Localization And Mapping)은 로봇의 위치 등을 파악하는데 널리 이용되고 있다. 일반적으로 시각 SLAM은 움직임이 없는 고정된 특징점을 대상으로 연속적인 시퀀스 상에서 카메라의 움직임을 추정한다. 따라서 이동하는 객체가 많이 존재하는 상황에서는 안정적인 결과를 기대하기 어렵다. 본 논문에서는 이동 객체가 많은 상황에서 스테레오 카메라를 이용한 SLAM을 안정화하는 방법을 제안한다. 먼저, 스테레오 카메라를 이용하여 깊이영상을 추출하고 옵티컬 플로우를 계산한다. 그리고 좌우 영상의 옵티컬 플로우를 이용하여 시차변화(disparity change)를 계산한다. 그리고 깊이 영상에서 사람과 같이 움직이는 객체에 대한 ROI(Region Of Interest)를 구한다. 실내 상황에서는 벽과 같은 정적인 평면들이 움직이는 영역으로 잘못 판단되는 경우가 자주 발생한다. 이런 문제점을 해결하기 위해 깊이 영상을 X-Z 평면으로 사영하고 허프(hough) 변환하여 장면을 구성하는 평면을 결정한다. 앞의 과정에서 판단된 이동 객체 중에서 벽과 같은 장면 요소를 제외한다. 제안된 방법을 통해 정적인 특징점이 요구되는 SLAM의 성능을 보다 안정화할 수 있음을 확인하였다.

깊이 및 컬러 영상을 이용한 실내환경의 3D 복원 (3D Reconstruction of an Indoor Scene Using Depth and Color Images)

  • 김세환;우운택
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 논문에서는 다시점 카메라를 이용하여 실내환경의 3D 복원을 위한 새로운 방법을 제안한다. 지금까지 다양한 양안차 추정 알고리즘이 제안되었으며, 이는 활용 가능한 깊이 영상이 다양함을 의미한다. 따라서 본 논문에서는 일반화된 다시점 카메라로 여러 방향에서 획득된 3D 점군을 이용한 실내환경 복원 방법을 다룬다. 첫 번째, 3D 점군들의 시간적 특성을 기반으로 변화량이 큰 3D 점들을 제거하고, 공간적 특성을 기반으로 주변의 3D 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 시점에서의 3D 점군을 동일한 영상평면으로 투영하고 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용하여 대응점을 찾는다. 그리고 대응점간의 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 여러 시점에서 획득된 3D 점군과 한 쌍의 2D 영상을 동시에 이용하여 3D 점들의 위치를 세밀하게 조절함으로써 최종적인 3D 모델을 생성한다. 제안된 방법은 대응점을 2D 영상 평면에서 찾음으로써 계산의 복잡도를 줄였으며, 3D 데이터의 정밀도가 낮은 경우에도 주변화소와의 상관관계를 이용함으로써 효과적으로 동작한다. 또한, 다시점 카메라를 이용함으로써 수 시점에서의 깊이 영상과 컬러 영상만으로도 실내환경에 대한 3D 복원이 가능하다. 제안된 방법은 네비게이션 뿐만 아니라 상호작용을 위한 가상 환경 생성 및 Mediated Reality (MR) 응용 분야에 활용될 수 있다.

  • PDF

효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법 (Feature Point Filtering Method Based on CS-RANSAC for Efficient Planar Homography Estimating)

  • 김대우;윤의녕;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권6호
    • /
    • pp.307-312
    • /
    • 2016
  • 증강현실 분야에서 호모그래피(Homography)를 이용한 비마커 기반의 객체 추적 기술(Markerless tracking)은 카메라의 방향, 위치를 파악하여 실세계의 영상에 가상의 객체를 정확하고 자연스럽게 증강할 수 있는 기술이다. 이와 같은 호모그래피를 추정하기 위한 방법으로 RANSAC 알고리즘이 많이 사용되고 있으며, 최근 기존의 RANSAC 알고리즘에 제약 조건 문제(Constraint Satisfaction Problem)를 적용하여 정확도를 향상시키고, 처리시간을 줄인 CS-RANSAC 알고리즘에 대한 연구가 진행되고 있다. 하지만 CS-RANSAC 알고리즘은 샘플링 단계에서 정확도가 낮은 호모그래피를 추정하게 하는 특징점이 선택되어 불필요한 연산으로 인해 알고리즘의 효율성이 저하되는 경우가 있다. 따라서 본 논문에서는 효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법을 제안한다. 제안하는 방법은 호모그래피 평가 단계에서 Symmetric Transfer Error로 정확도가 높은 호모그래피를 추정하게 하는 특징점인지를 평가하고 불필요한 특징점들을 다음 샘플링 단계에서 제외함으로써 정확도를 향상키고 처리시간을 줄였다. 제안하는 CS-RANSAC 기반의 특징점 필터링 방법의 성능평가를 위하여 제안하는 방법을 적용한 알고리즘과 기존의 RANSAC 알고리즘, CS-RANSAC 알고리즘의 수행시간과 오차율(Symmetric Transfer Error), 참정보 포함비율을 비교하였다. 실험 결과 본 논문에서 제안한 방법이 기존 CS-RANSAC 알고리즘보다 수행시간이 평균적으로 약 5% 단축되었고 오차율은 약 14% 줄어들어 더욱 정확한 호모그래피를 추정 할 수 있게 되었다.