• Title/Summary/Keyword: 카메라 위치 추정

Search Result 291, Processing Time 0.029 seconds

Speech Enhancement using Adaptive Matched Filter Microphone Array (적응 정합 필터 마이크로폰 어레이를 이용한 음질 향상)

  • Lee Oe-Hyung;Choi Young-Keun;Kim Ki-Man;Park Kyu-Sik
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.205-208
    • /
    • 2002
  • 최근 영상 회의 시스템에서 화자 위치 추정 및 음질 향상 기술이 연구되고 있다. 이 시스템에서는 마이크로폰 어레이를 이용하여, 화자의 위치를 파악하여 화자의 방향으로 카메라를 자동으로 조정해 주고 그 방향으로부터 입사되는 신호만을 수신할 수 있도록 한다. 이를 위해 마이크로폰 어레이가 연구되어져 왔다. 덜 연구에서는 시간에 따라 변화하는 음향 환경에 적응하는 적응 정합 필터 마이크로폰 어레이를 제안하고, 실험을 통해 그 성능을 고찰하였다.

  • PDF

Implementation of Speech Enhancement System using Matched Filter Array (Matched filter Array를 이용한 음질 향상 시스템 구현)

  • 오승수;김기만
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.173-176
    • /
    • 1999
  • Recently, speaker localizing estimation technique has been rising in teleconference systems. In this system, it is recognized speaker location using microphone array and camera is directed to speaker location automatically. In this paper, it was described to be able to enhance the speech qualify through microphone array, decrease computational loads using IIR filter as inverse filter, and confirmed to implement hardware using DSP processor.

  • PDF

Markerless Augmentation of Virtual Object Using Bare-Hand (손동작을 이용한 가상 물체 증강)

  • Kim, Il-Moek;Jung, Kyung-Boo;Choi, Byung-Uk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.212-215
    • /
    • 2010
  • 본 논문은 카메라 영상을 통해 사용자의 손동작을 인식하여 가상의 물체를 증강시키는 인터페이스를 제안한다. 사용자는 영상의 일부를 원형으로 그려주는 특정한 손동작을 취하여 영역을 선택하고 시스템은 이를 인식하여 물체를 증강 시킨다. 손동작을 인식하기 위하여 먼저 손 외곽선을 찾아낸 후, 찾아낸 외곽선의 곡률을 계산하여 손가락의 위치를 알아낸다. 알아낸 손가락의 상대적인 위치와 개수를 이용하여 손동작을 구분한다. 또한 적은 연산량으로도 안정적으로 물체를 증강 시킬 수 있도록 이전 프레임에서 자세추정에 사용된 특징점들을 이용하여 현재 프레임에서 필요한 인라이어를 찾아 낼 수 있는 방법을 제시한다.

  • PDF

Depth Image-based Ground Detection and Altitude Measurement Method (깊이영상을 이용한 지면 검출 및 고도 측정 방법)

  • Cheon, Muho;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.180-182
    • /
    • 2021
  • 본 논문에서는 드론의 비행 장소와 온도 및 습도에 영향을 받지 않는 적외선 기반 깊이 카메라로부터 얻어진 깊이영상을 분석하여 지면 영역을 찾고 AGL(Above Ground Level) 단위의 고도를 측정하는 방법을 제안한다. Decimation filter 와 Median filter 를 적용하여 잡음 및 빈 데이터들을 제거한 깊이영상으로부터 RANSAC (RANdom Sample Consensus) 기반 평면 모델 추정 방법을 이용하여 지면 영역과 이에 대한 평면의 방정식을 유추하고 현재 위치와의 거리를 계산한다. 성능 평가를 위해 Lidar 센서와 비교한 결과, 제안 방법이 지면에 위치한 장애물에 영향을 더 적게 받으며, 자세 정보와 독립적으로 고도를 측정할 수 있었다.

  • PDF

Gaze Detection by Computing Facial and Eye Movement (얼굴 및 눈동자 움직임에 의한 시선 위치 추적)

  • 박강령
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.79-88
    • /
    • 2004
  • Gaze detection is to locate the position on a monitor screen where a user is looking by computer vision. Gaze detection systems have numerous fields of application. They are applicable to the man-machine interface for helping the handicapped to use computers and the view control in three dimensional simulation programs. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.8 cm of RMS error.

A Study on the Estimation of Object's Dimension based on the Vision System Model of Extended Kalman filtering (확장칼만 필터링의 비젼시스템 모델을 이용한 물체 치수 측정에 관한 연구)

  • Jang, W.S.;Ahn, H.C.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.110-116
    • /
    • 2005
  • It is very important to reduce the computational processing time for the application of the vision system in real time such as inspection, the determination of object's dimension and welding etc, because the vision system model involves a lot of measurement data acquired by CCD camera. Also, a lot of computation time is required in estimating the parameters in the vision system model if the iterative batch estimation method such as Newton Raphson is used. Thus, the effective computation method such as the Extended Kalman Filtering(EKF) is required to solve the above problems. The EKF has much advantages in that it takes explicitly into account the measurement uncertainties, and is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm to compute the parameters in the vision system model in real time. This vision system model involves the six parameters to account for the cameras inner and outer parameters. Also the EKF is applied to estimate the object's dimension. Finally, practicality of the estimation scheme of the vision system based on the EKF is verified experimently by performing the estimation of object's dimension.

Compensation for Fast Head Movements on Non-intrusive Eye Gaze Tracking System Using Kalman Filter (Kalman filter를 이용한 비접촉식 응시점 추정 시스템에서의 빠른 머리 이동의 보정)

  • Kim, Soo-Chan;Yoo, Jae-Ha;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.35-41
    • /
    • 2007
  • We proposed an eye gaze tracking system under natural head movements. The system consists of one CCD(charge-coupled device) camera and two front-surface mirrors. The mirrors rotate to follow head movements in order to keep the eye within the view of the camera. However, the mirror controller cannot guarantee the fast head movements, because the frame rate is generally 30Hz. To overcome this problem, we applied Kalman filter to estimate next eye position from the current eye image. In the results, our system allowed the subjects head to move 60cm horizontally and 40cm vertically, with the head movement speed about 55cm/sec and 45cm/sec, respectively. And spatial gate resolutions were about 4.5 degree and 5.0 degree, respectively, and the gaze estimation accuracy was 92% under natural head movements.

Thermal Image Real-time estimation and Fire Alarm by using a CCD Camera (CCD 카메라를 이용한 열화상 실시간 추정과 화재경보)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.92-98
    • /
    • 2016
  • This study evaluated thermal image real-time estimation and fire alarm using by a CCD camera, which has been a seamless feature-point analysis method, according to the angle and position and image fusion by a vector coordinate point set-up of equal shape. The system has higher accuracy, fixing data value of temperature sensing and fire image of 0~255, and sensor output-value of 0~5,000. The operation time of a flame specimen within 500 m, 1000 m, and 1500 m from the test report specimen took 7 s, 26 s, and 62 s, respectively, and image creation was proven. A diagnosis of fire accident was designated to 3 steps: Caution/Alarm/Fire. Therefore, a series of process and the transmission of SNS were identified. A light bulb and fluorescent bulb were also tested for a false alarm test, but no false alarm occurred. The possibility that an unwanted alarm will be reduced was verified through a forecast of the fire progress or real-time estimation of a thermal image by the change in the image of a time-based flame and an analysis of the diffusion velocity.

Feature-Based Light and Shadow Estimation for Video Compositing and Editing (동영상 합성 및 편집을 위한 특징점 기반 조명 및 그림자 추정)

  • Hwang, Gyu-Hyun;Park, Sang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Video-based modeling / rendering developed to produce photo-realistic video contents have been one of the important research topics in computer graphics and computer visions. To smoothly combine original input video clips and 3D graphic models, geometrical information of light sources and cameras used to capture a scene in the real world is essentially required. In this paper, we present a simple technique to estimate the position and orientation of an optimal light source from the topology of objects and the silhouettes of shadows appeared in the original video clips. The technique supports functions to generate well matched shadows as well as to render the inserted models by applying the estimated light sources. Shadows are known as an important visual cue that empirically indicates the relative location of objects in the 3D space. Thus our method can enhance realism in the final composed videos through the proposed shadow generation and rendering algorithms in real-time.

Autonomous Mobile Robot System Using Adaptive Spatial Coordinates Detection Scheme based on Stereo Camera (스테레오 카메라 기반의 적응적인 공간좌표 검출 기법을 이용한 자율 이동로봇 시스템)

  • Ko Jung-Hwan;Kim Sung-Il;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.26-35
    • /
    • 2006
  • In this paper, an automatic mobile robot system for a intelligent path planning using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation. From some experiments on robot driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the mobile robot and the objects, and relative distance between the other objects is found to be very low value of $2.19\%$ and $1.52\%$ on average, respectably.