• Title/Summary/Keyword: 카메라 기반 주행

Search Result 166, Processing Time 0.037 seconds

Application of Deep Learning-based Object Detection and Distance Estimation Algorithms for Driving to Urban Area (도심로 주행을 위한 딥러닝 기반 객체 검출 및 거리 추정 알고리즘 적용)

  • Seo, Juyeong;Park, Manbok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.83-95
    • /
    • 2022
  • This paper proposes a system that performs object detection and distance estimation for application to autonomous vehicles. Object detection is performed by a network that adjusts the split grid to the input image ratio using the characteristics of the recently actively used deep learning model YOLOv4, and is trained to a custom dataset. The distance to the detected object is estimated using a bounding box and homography. As a result of the experiment, the proposed method improved in overall detection performance and processing speed close to real-time. Compared to the existing YOLOv4, the total mAP of the proposed method increased by 4.03%. The accuracy of object recognition such as pedestrians, vehicles, construction sites, and PE drums, which frequently occur when driving to the city center, has been improved. The processing speed is approximately 55 FPS. The average of the distance estimation error was 5.25m in the X coordinate and 0.97m in the Y coordinate.

Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera (능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-12
    • /
    • 2005
  • A Mobile manipulator - a serial connection of a mobile robot and a task robot - is a very useful system to achieve various tasks in dangerous environment. because it has the higher performance than a fixed base manipulator in regard to the size of it's operational workspace. Unfortunately the use of a mobile robot introduces non-holonomic constraints, and the combination of a mobile robot and a manipulator generally introduces kinematic redundancy. In this paper, first a method for estimating the position of object at the cartesian coordinate system acquired by using the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and real object is proposed. Second, we propose a method to determine a optimal path between current the position of mobile manipulator whose mobile robot is non-holonomic and the position of object estimated by image information through the global displacement of the system in a symbolic way, using homogenous matrices. Then, we compute the corresponding joint parameters to make the desired displacement coincide with the computed symbolic displacement and object is captured through the control of a manipulator. The effectiveness of proposed method is demonstrated by the simulation and real experiment using the mobile manipulator.

A Driving Information Centric Information Processing Technology Development Based on Image Processing (영상처리 기반의 운전자 중심 정보처리 기술 개발)

  • Yang, Seung-Hoon;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • Today, the core technology of an automobile is becoming to IT-based convergence system technology. To cope with many kinds of situations and provide the convenience for drivers, various IT technologies are being integrated into automobile system. In this paper, we propose an convergence system, which is called Augmented Driving System (ADS), to provide high safety and convenience of drivers based on image information processing. From imaging sensor, the image data is acquisited and processed to give distance from the front car, lane, and traffic sign panel by the proposed methods. Also, a converged interface technology with camera for gesture recognition and microphone for speech recognition is provided. Based on this kind of system technology, car accident will be decreased although drivers could not recognize the dangerous situations, since the system can recognize situation or user context to give attention to the front view. Through the experiments, the proposed methods achieved over 90% of recognition in terms of traffic sign detection, lane detection, and distance measure from the front car.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

Guidance Line Extraction Algorithm using Central Region Data of Crop for Vision Camera based Autonomous Robot in Paddy Field (비전 카메라 기반의 무논환경 자율주행 로봇을 위한 중심영역 추출 정보를 이용한 주행기준선 추출 알고리즘)

  • Choi, Keun Ha;Han, Sang Kwon;Park, Kwang-Ho;Kim, Kyung-Soo;Kim, Soohyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose a new algorithm of the guidance line extraction for autonomous agricultural robot based on vision camera in paddy field. It is the important process for guidance line extraction which finds the central point or area of rice row. We are trying to use the central region data of crop that the direction of rice leaves have convergence to central area of rice row in order to improve accuracy of the guidance line. The guidance line is extracted from the intersection points of extended virtual lines using the modified robust regression. The extended virtual lines are represented as the extended line from each segmented straight line created on the edges of the rice plants in the image using the Hough transform. We also have verified an accuracy of the proposed algorithm by experiments in the real wet paddy.

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Deep Image Retrieval using Attention and Semantic Segmentation Map (관심 영역 추출과 영상 분할 지도를 이용한 딥러닝 기반의 이미지 검색 기술)

  • Minjung Yoo;Eunhye Jo;Byoungjun Kim;Sunok Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Self-driving is a key technology of the fourth industry and can be applied to various places such as cars, drones, cars, and robots. Among them, localiztion is one of the key technologies for implementing autonomous driving as a technology that identifies the location of objects or users using GPS, sensors, and maps. Locilization can be made using GPS or LIDAR, but it is very expensive and heavy equipment must be mounted, and precise location estimation is difficult for places with radio interference such as underground or tunnels. In this paper, to compensate for this, we proposes an image retrieval using attention module and image segmentation maps using color images acquired with low-cost vision cameras as an input.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

An Adaptive Path-Planning for Intelligent AGV System (지능형 무인반송시스템을 위한 적응적 경로설정)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.115-121
    • /
    • 2017
  • In this paper, the intelligent vision system for an effective and intelligent path-planning of an industrial AGV system based on stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the industrial AGV system and the obstacle detected and the 2D path coordinates obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The industrial AGV system move automatically by effective and intelligent path-planning using the obtained 2D path coordinates. From some experiments on AGV system driving with the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 2% on average, respectably.