• Title/Summary/Keyword: 카메라 기반 인식

Search Result 700, Processing Time 0.026 seconds

Development of a Fault Detection Algorithm for Multi-Autonomous Driving Perception Sensors Based on FIR Filters (FIR 필터 기반 다중 자율주행 인지 센서 결함 감지 알고리즘 개발)

  • Jae-lee Kim;Man-bok Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.175-189
    • /
    • 2023
  • Fault detection and diagnosis (FDI) algorithms are actively being researched for ensuring the integrity and reliability of environment perception sensors in autonomous vehicles. In this paper, a fault detection algorithm based on a multi-sensor perception system composed of radar, camera, and lidar is proposed to guarantee the safety of an autonomous vehicle's perception system. The algorithm utilizes reference generation filters and residual generation filters based on finite impulse response (FIR) filter estimates. By analyzing the residuals generated from the filtered sensor observations and the estimated state errors of individual objects, the algorithm detects faults in the environment perception sensors. The proposed algorithm was evaluated by comparing its performance with a Kalman filter-based algorithm through numerical simulations in a virtual environment. This research could help to ensure the safety and reliability of autonomous vehicles and to enhance the integrity of their environment perception sensors.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Vehicle Detection based on the Haar-like feature and Image Segmentation (영상분할 및 Haar-like 특징 기반 자동차 검출)

  • Choi, Mi-Soon;Lee, Jeong-Hwan;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1314-1321
    • /
    • 2010
  • In this paper, we study about the vehicle detection algorithm which is in the process of travelling from the road. An input image is segmented by means of split and merge algorithm. And two largest segmented regions are removed for reducing search region and speed up processing time. In order to detect the back side of the front vehicle considers a vertical/horizontal component, uses an integral image with to apply Haar-like methods which are the possibility of shortening a calculation time, classified with SVM. The simulation result of the method which is proposed appeared highly.

Implementation of Context based Service Framework for Mobile Environment (모바일 환경에 적합한 상황정보 기반 서비스 프레임워크의 개발)

  • Jeong, Seong-Hun;Kang, Bum-Seok;Yoon, Hyung-Min;Han, Tack-Don
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.1381-1384
    • /
    • 2005
  • 빠른 속도로 확산되고 있는 모바일 기기는 카메라, GPS, RFID 등과 같은 다양한 센서를 장착하고 Wi-Fi, WiMAX, WiBro 등의 무선 네트워크를 지원하는 형태로 발전하고 있다. 이러한 발전으로 사용자는 언제 어디서나 주변의 컴퓨팅 자원을 이용할 수 있게 되었고 모바일 기기의 서비스는 주변의 센서 또는 임베디드 컴퓨팅 장치로부터 수집되는 다양한 주변 환경 정보와 시스템 상태정보, 네트워크 상황정보 등의 디지털 정보를 이용하여 주변상황인식(context awareness)이 가능한 스마트 서비스로 발전하고 있다. 주변상황인식을 위하여 서비스는 주변에 존재하는 다양한 장치를 효율적으로 검색하고 이질적인(Heterogeneous) 장치와 정보의 표현 및 전송에 대한 호환성이 필요하다. 이러한 문제는 규격화된 프레임워크의 사용으로 해결할 수 있으며 상황정보의 관리 기능을 추가하여 서비스 개발의 생산성을 높일 수 있다 본 논문에서는 모바일 컴퓨팅 환경에서 상황정보의 제공과 사용에 적합한 프레임워크로서 MoCE(Mobile Context Exploerer) 아키텍처를 설계하였다. MoCE 는 상황정보의 수집, 변환, 분류, 통합 등의 기능을 제공하고 모바일 환경의 특성에 기인한 상황정보 발견 및 전송 프로토콜을 설계하여 사용하고 있다. 또한 Surround multiCam 서비스 예제를 구현하여 제안한 아키텍처의 안정성 및 성능을 실험하였다.

  • PDF

Realization of Fairy Tale - Robot Aquarium Display System with Visitor Interaction (관람객과 상호 교감하는 전래동화-로봇의 수중무대 연출시스템 구현)

  • Shin, Kyoo-Jae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1180-1187
    • /
    • 2018
  • This paper had implemented the underwater stage through interaction with fish robots and visitors in the background of traditional fairy tales using 3D floating hologram in an aquarium. The recognition of the object position of the spectator and the underwater robot were performed using the color recognition algorithm. Also, the position tracking algorithm was proposed to follow the object of the visitor and the original fairy tale. This experimental system consists of fish robot, camera, KIOSK for underwater robot control and beam project for underwater imaging. This experiment was carried out by the National Busan Science Museum, and it had satisfied the performance of the underwater stage.

A Method for Body Keypoint Localization based on Object Detection using the RGB-D information (RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, in the field of video surveillance, a Deep Learning based learning method has been applied to a method of detecting a moving person in a video and analyzing the behavior of a detected person. The human activity recognition, which is one of the fields this intelligent image analysis technology, detects the object and goes through the process of detecting the body keypoint to recognize the behavior of the detected object. In this paper, we propose a method for Body Keypoint Localization based on Object Detection using RGB-D information. First, the moving object is segmented and detected from the background using color information and depth information generated by the two cameras. The input image generated by rescaling the detected object region using RGB-D information is applied to Convolutional Pose Machines for one person's pose estimation. CPM are used to generate Belief Maps for 14 body parts per person and to detect body keypoints based on Belief Maps. This method provides an accurate region for objects to detect keypoints an can be extended from single Body Keypoint Localization to multiple Body Keypoint Localization through the integration of individual Body Keypoint Localization. In the future, it is possible to generate a model for human pose estimation using the detected keypoints and contribute to the field of human activity recognition.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

Real Time Eye Detection and Tracking Under Various Light Conditions (다양한 조명하에서 실시간 눈 검출 및 추적)

  • Cho, Hyun-Seob;Lee, Keun-Wang;Ryu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2836-2838
    • /
    • 2005
  • 본 논문에서는 다양한 조명하에서 실시간으로 눈을 검출하고 추적하는 새로운 방법을 제안하고자 한다. 기존의 능동적 적외선을 이용한 눈 검출 및 추적 방법은 외부의 조명에 매우 민감하게 반응하는 문제점을 가지고 있으므로, 본 논문에서는 적외선 조명을 이용한 밝은 동공 효과와 전형적인 외형을 기반으로 한 사물 인식 기술을 결합하여 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균 이동 추적방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 제안된 방법이 효율적으로 다양한 조명하에서 눈 검출과 추적을 할 수 있음을 보여 주었다.

  • PDF