• Title/Summary/Keyword: 카라

Search Result 2,583, Processing Time 0.029 seconds

탐방 - 한국후지카공업

  • Jo, Tae-Yeop
    • 방재와보험
    • /
    • s.24
    • /
    • pp.42-43
    • /
    • 1985
  • 지난해 뜻하지 않은 집중호우로 공장이 침수되어 많은 피해를 입고 전 임직원의 피땀어린 노력과 수해보험금을 받아 재기한 한국후지카공업(주)를 찾았다.

  • PDF

충북대학교 스마트카 연구센터

  • Gi, Seok-Cheol
    • Journal of the KSME
    • /
    • v.57 no.7
    • /
    • pp.35-39
    • /
    • 2017
  • 이 글에서는 충북대학교 스마트카 연구센터의 설립 목적, 연구 방향, 현재 진행 중인 연구과제와 연구 환경 등에 대해 소개하고자 한다.

  • PDF

Microstructure and Strength of Alkali-Activated Kaolin-Fly Ash Blend Binder (카올린-플라이애시 혼합 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Kim, Tae-Wan;Oh, Jae-Eun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This study presents microstructural characteristics and strength properties of alkali-activated kaolin(K)-fly ash(FA) blends binders. The compressive strength, X-ray diffraction(XRD), thermogravimetric(TG) analysis and SEM/EDS were measured for hardened samples. The results were shown that all the samples had developed the compressive strength over time, regardless of replacement levels of K. It was found that when the amount of K increased, the strengths of samples decreased. In XRD result, no new crystalline phases were observed in all the hardened samples other than the crystalline components of raw FA and K, whereas TG analysis showed that N-A-S-H gel was formed as a reaction product in all the samples. Samples did not have the typical microstructure of dense, and there is little significant difference between the microstructures of the samples despite the differences in the strength testing results with replacement ratios of K. This study showed that the strength of sample was larger for lower Si/Al ratio of reaction product formed in sample. According to the correlation between Si/Al ratio and strength in this study, it is expected that if a chemical additive is used for lowering the Si/Al ratio of reaction product(i.e., increasing the $Al_2O_3$ solubility) in alkali-activated K-FA blends binders, strength improvement in K-FA blends binders could be achieved.

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Preparation and Characterization of Surface Modified Mica by Microwave-enhanced Wet Etching (마이크로웨이브로 증폭된 습식 에칭에 의한 표면 개질 마이카의 제조와 특성)

  • Jeon, Sang-Hoon;Kwon, Sun-Sang;Kim, Duck-Hee;Shim, Min-Kyung;Choi, Young-Jin;Han, Sang-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • In this study we successfully altered the structural characteristics of the mica surface and were able to control oil-absorption by using the microwave enhanced etching (MEE) technique, which has originally been used in semiconductor industry. When microwave energy is applied to the mica, the surface of the mica is etched in a few minutes. As the result of etching, oil-absorption of the mica was enhanced and surface whiteness was improved by modifying the silicon dioxide layer. Additionally, the high whiteness was maintained even though the etched mica absorbed the sebum or sweat. The surface modification of mica was performed by microwave irradiation after the treatment of hydrofluoric acid. The degree of etching was regulated by acid concentration, irradiation time, the amount of energy and slurry concentration. The surface morphology of the etched mica appears to be the shape of the 'Moon'. The characteristics of surface area and roughness were examined by Brunauer-Emmett-Teller (BET) surface area analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM), spectrophotometer and goniophotometer.

The Inhibition Effect of Alkali-Silica Reaction in Concrete by Pozzolanic Effect of Metakaolin (메타카오린의 포조란 효과에 의한 콘크리트 내 알칼리-실리카 반응 억제 효과)

  • Lee Hyomin;Jun Ssang-Sun;Hwang Jin-Yeon;Jin Chi-Sub;Yoon Jihae;Ok Soo Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.277-288
    • /
    • 2004
  • Alkali-silica reaction (ASR) is a chemical reaction between alkalies in cement and chemically unstable aggregates and causes expansion and cracking of concrete. In the Present study, we studied the effects of metakaolin, which is a newly introduced mineral admixture showing excellent pozzolainc reaction property, on the inhibition of ASR. We prepared mortar-bars of various replacement ratios of metakaolin and conducted alkali-silica reactivity test (ASTM C 1260), compressive strength test and flow test. We also carefully analyzed the mineralogical changes in hydrate cement paste by XRD qualitative analysis. The admixing of metakaolin caused quick pozzolanic reaction and hydration reaction that resulted in a rapid decrease in portlandite content of hydrated cement paste. The expansion by ASR was reduced effectively as metakaolin replaced cement greater than 15%. This resulted in that the amounts of available portlandite decreased to less than 10% in cement paste. It is considered that the inhibition of ASR expansion by admixing of metakaolin was resulted by the combined processes that the formation of deleterious alkali-calcium-silicate gel was inhibited and the penetration of alkali solution into concrete was retarded due to the formation of denser, more homogeneous cement paste caused by pozzolanic effect. Higher early strength (7 days) than normal concrete was developed when the replacement ratios of metakaolin were greater than 15%. And also, late strength (28 days) was far higher than normal concrete for the all the replacement ratios of metakaolin. The development patterns of mechanical strength for metakaolin admixed concretes reflect the rapid pozzolanic reaction and hydration properties of metakaolin.

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.

Characteristics of Silica Coated ${\gamma}-Fe_{2}O_{3}$ with Heat-treatment (열처리에 따른 실리카 피착 ${\gamma}-Fe_{2}O_{3}$의 특성)

  • Lee, J.Y.;Byeon, T.B.;Kim, D.Y.;Lee, H.;Han, K.H.;Sohn, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.108-114
    • /
    • 1993
  • This paper presents a study on the effects of silica coating in the production of ${\gamma}-Fe_{2}O_{3}$ powders suitable for magnetic recording media. Emphasis has been put on investigating the relationship between the powder characteristics and the effects of silica coating in the heat-treatment stage of ${\gamma}-Fe_{2}O_{3}$ production. After we prepared non-coated ${\gamma}-Fe_{2}O_{3}$ and silica coated ${\gamma}-Fe_{2}O_{3}$ with coating water glass on the surface of goethite and heattreatment process, we compared and investigated powder characteristics. As silica coated layer played a role of preventing the powders from overreduction to metal iron and rapid oxidation, silica coated ${\gamma}-Fe_{2}O_{3}$ showed superior magnetization value due to inhibiting t!1e adulteration of ${\alpha}-Fe_{2}O_{3}$ into the final product. When silica coated layer acted as a sintering restrainer, silica coated ${\gamma}-Fe_{2}O_{3}$ showed high coercivity and specific sur-face area due to good acicularity.

  • PDF

Influence of Surface Treatment of SiO$_2$ and Stirring Rate on Fragrant Oil Release Behavior of Poly($\varepsilon$-caprolactone) Microcapsules (실리카의 표면 처리와 교반 속도가 폴리카프로락톤 마이크로캡슐의 향유 방출 거동에 미치는 영향)

  • 박수진;양영준;이재락;서동학
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.464-469
    • /
    • 2003
  • In this work, the fragrant oil release behavior of poly($\varepsilon$-caprolactone) (PCL) microcapsules containing SiO$_2$ was investigated. The SiO$_2$ was chemically treated in 10, 20, and 30 wt% hydrochloric acid and sodium hydroxide. The acid and base values were determined by Boehm's titration technique and $N_2$/77 K adsorption isotherm characteristics, the specific surface area and total pore volume were studied by BET. The PCL microcapsules containing SiO$_2$ and fragrant oil were prepared by oil-in-water (o/w) emulsion solvent evaporation method. The shape and surface of PCL microcapsules were observed using image analyzer and scanning electron microscope (SEM). The fragrant oil release behavior of PCL microcapsules was characterized using UV/vis. spectra. The average diameters of PCL microcapsules were decreased from 35 to 21 $\mu$m with increasing stirring rate. It was found that in the case of acidic treatment the fragrant oil adsorption capacity and release rate were increased due to the increase of specific surface area and acid value. In the case of basic treatment, the fragrant oil adsorption capacity and release rate were decreased due to the decrease of sp ecific surface area and the increase of acid-base interactions between SiO$_2$-NaOH and fragrant oil with increasing base value of SiO$_2$.