• Title/Summary/Keyword: 침하량예측기법

Search Result 49, Processing Time 0.021 seconds

Reliability of Ultimate Settlement Prediction Methods (연약지반 장기 침하량 예측기법의 신뢰성 평가)

  • 우철웅;장병욱;송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.35-41
    • /
    • 1996
  • The theory of consolidation has been achieved remarkable development in terms of theory such as finite consolidation theory, two dimensional Rendulic consolidation theory. Though those theories are well defined, the analysis is by no means straightforward, because associated properties are very difficult to determine in the laboratory, Therefore Terzaghi's one dimensional consolidation theory and Barron's cylindrical consolidation theory are still widely used in engineering practice. The theoretical shortcomings of those consolidation theories and uncertainties of associated properties make inevitably some discrepancy between theoretical and field settlements. Field settlement measurement by settlement plate is, therefore, widely used to overcome the discrepancy. Ultimate settlement is one of the most important factor of embankment construction on soft soils. Nowadays the ultimate settlement prediction methods using field settlement data are widely accepted as a helpful tool for field settlement analysis of embankment construction on soft soils. Among the various methods of ultimate settlement prediction, hyperbolic method and Asaoka's method are most commonly used because of their simplicity and ability to give a reasonable estimate of consolidation settlement. In this paper, the reliability of hyperbolic method and Asaoka's method has been examined using analytical methods. It is shown that both hyperbolic method and Asaoka's method are significantly affected by the direction of drainage.

  • PDF

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 실용적 근사해석법 개발)

  • Song, Young Hun;Song, Myung Jun;Jung, Min Hyung;Park, Yung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In case of estimation of settlement for the piled-raft foundation, it is necessary to consider interaction among raft, piles and soil. But, simple analytic methods usually are not applicable to considering this complicated interaction. In this study, a computer-based approximate analytic method, HDPR, was developed in consideration of above mentioned interaction in order to analysis of settlement for the piled-raft foundation. The finite element method was applied to raft analysis by means of the Mindlin plate theory, and soil and piles were modeled as springs which were connected with their raft. The linear spring which can consider multi layered soil and the non-linear spring were applied to soil springs and pile springs, respectively. The raft-piles-soil interaction was reflected to each spring. In order to verify the developed analytic method, it was compared and analyzed with 3D FEM analysis, existing approximate analytic method and site monitoring data. As a result, the developed analytic method showed reasonable results of settlement estimations of raft and piles for each case. From a practical point of view, it is confirmed that this analytic method is able to apply for analysis and design of the piled-raft foundation.

Estimation of volume Ratio according to Step up Filling Method for a Dredged Clay (단계투기법에 의한 준설점토의 체적비 산정)

  • Lee, Song;Kang, Myoung-Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.167-178
    • /
    • 2000
  • An experimental study on step up filling method is carried out to reinforce the Yano method which is widely used to estimate volume ratio and self-weight consolidation settlement in reclamation area. This method considers actual reclamation construction in which dredged clay is continuously filled and rising of deposit height is presented as a result of volume decrease by height rising and self-weight consolidation. It measured the relationship between filling velocity and deposit rising velocity; calculated the total filling height which is needed to achieve the planned final deposit height, and its solid height and the time which is taken to finish the planned final deposit height; and on the basis of these calculated parameters, predicted the self-weight consolidation and volume change ratio in reclamation construction. Yano method is also used to predict the same conditions. 29.8% in self-weight consolidation, 31.1% in volume ratio, 40% in void ratio and water content is underestimated in Yano method compared to step up filling method.

  • PDF

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF

A Study on the Performance of Vacuum Preloading with Vertical Drains (수직배수를 병행한 진공압밀공법 적용시의 연약지반 거동 예측 연구)

  • Park, Jung-Bae;Kim, Seung-U;Kim, Yu-Seok
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.79-88
    • /
    • 1996
  • In this study, prediction of soil behavior under vacuum preloading with vertical drain is explored on the basis of numerical models and toe results were compared with field measurements. Reasonable prediction of the time rate of settlements and pore pressure dissipation under vacuum preloading is the maj or concern. The conventional method for vatsuum preloading is based on modeling vacuum preloading as surcharge loading for the consolidation analysis. However, this modeling may violate the real behavior of soils under vacuum loading since the total stress in the analysis varies due to the modeled surcharge loading whereas in'.situ total stress of soils under vacuum loading is constant. In this study a new method is suggested. Instead of modeling vacuum loading as surcharge loading, negative hydraulic head is applied at the surface drain boundary to simulate the vacuum preloading. Comparisons of predictions and field measurements of soil behavior under vatsuum preloading are presented and the usefulness of the new modeling technique is demonstrated.

  • PDF

연약지반 장기침하량 예측기법의 적용성 연구

  • 장병욱;우철웅;이경호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.425-430
    • /
    • 1998
  • The theory of consolidation has been achieved remarkable development, but associated properties are very difficult to determine in the laboratory. The theoretical shortcomings of those consolidation theories and uncertainties of associated properties make inevitably some discrepancy between theoretical and field settlements. Field settlement measurement by settlement plate is, therefore, widely used to overcome the discrepancy. Among the various methods of ultimate settlement predictions using field settlement data, hyperbolic method and Asaoka's method are most commonly used because of their simplicity and ability to give a reasonable estimate of consolidation settlement. In this paper, the applicability of hyperbolic method and Asaoka's method has been estimated by the analysis of the laboratory consolidation test and field measured data. It is shown that both hyperbolic method and Asaoka's method are significantly affected by the direction of drainage, and Asaoka's method is better to reflect the properties of the soft foundation than hyperbolic method.

  • PDF

Prediction of Crest Settlement of Center Cored Rockfill Dam using an Artificial Neural Network Model (인공신경망기법을 이용한 중심차수벽형 석괴댐의 정부침하량 예측)

  • Kim, Yong-Seong;Kim, Bum-Joo;Oh, Sang-Eun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.73-81
    • /
    • 2012
  • In this study, the settlement data of 32 center cored rockfill dams (total 39 monitored data) were collected and analyzed to develop the method to predict the crest settlement of a CCRD after impounding by using the internal settlement data occurred during construction. An artificial neural network (ANN) modeling was used in developing the method, which was considered to be a more reliable approach since in the ANN model dam height, core width, and core type were all considered as input variables in deriving the crest settlement, whereas in conventional methods, such as Clements's method, only dam height is used as a variable. The ANN analysis results showed a good agreement with the measured data, compared to those by the conventional methods using regression analysis. In addition, a simple procedure to use the ANN model for engineers in practice was provided by proposing the equations used for given input values.

Prediction of Consolidational Settlement of Dredged and Reclaimed Ground (준설매립토지반의 압밀침하량 예측)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.317-327
    • /
    • 2001
  • For soils with high void ratios, the inverse method of utilizing results obtained from centrifuge model test was used to find the constitutive relation of effective stress - void ratio - permeability whereas conventional oedometer test and constant rate of strain consolidation test were also used to fine its relation at ranges of relatively low void ratio. Results of column test about settlement of interface and pore pressure and distribution with time were compared with numerically estimated values to confirm such a constitutive relation as obtained from the inverse method. Consolidational settlement in dredged and reclaimed ground, where the consolidation was in progress, was predicted by using the numerical technique implemented with the finite strain consolidation theory.

  • PDF

A Study on the Concrete Lining Behavior due to Tunnel Deterioration (터널 열화로 인한 콘크리트 라이닝의 거동에 관한 연구)

  • Han, Young-Chul;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.21-34
    • /
    • 2014
  • This paper studies the time-dependent behaviors of tunnel and surrounding ground due to tunnel deterioration. In the first part, the literature on deterioration characteristics of tunnels was reviewed. In the second part, a numerical analysis was performed to investigate the behavior of concrete lining on the typical section of Korean high-speed rail tunnel (weathered rock) after determination of input variables related to deterioration impact. The result shows that the settlement at the crown of tunnel and surface ground increased up to 7.0% and 30.2% of the total settlements during construction stage, respectively, and the internal convergence reduction of 9.0 mm for concrete linings was generated within 30 years after completion of tunnel construction. Also the loosening height increased up to 2.55 times of tunnel height within 50 years, which is higher than that of Terzaghi's recommendation on ultimate state. Due to this process of extending zones, it is found that additional loads were applied to concrete lining with the axial stress about 3.20~3.66 MPa, which accelerates tunnel deterioration. Finally the quantitative design approach to evaluate time-dependent behavior of lining and surrounding ground due to tunnel deterioration was proposed.

Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance (고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구)

  • Park, Dong-Woo;Choi, Hee-Jong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.787-793
    • /
    • 2012
  • A hull form design technique to enhance the wave-making resistance performance for a medium size high speed Ro-Pax ship was studied introducing an optimization method and an automatic hull form modification method. SQP(sequential quadratic programming) was applied as the optimization algorithm and the geometry of hull surface was represented and modified using the NURBS(Non-Uniform Rational B-Spline). The wave-making resistance performance as an objective function in the optimization procedure was evaluated using the Rankine source panel method in which nonlinearity of the free surface boundary conditions and the trim and sinkage of the ship was fully taken into account. Using the Ro-Pax ship as a base hull, the hull-form optimization method was applied to obtain the hull shape that produced the lower wave-making resistance. To verify the validity of the hull-form optimization method, the numerical results was compared with the model test results.