• Title/Summary/Keyword: 침지형 모듈

Search Result 18, Processing Time 0.023 seconds

The Membrane Surface Velocity of YEF(Vonsei End Free) Module by Aeration (YEF(Yonsei End Free) 모듈의 산기에 의한 표면 유속)

  • 윤희성;권오성;윤소담;양형모;노수홍
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.94-97
    • /
    • 2004
  • 수처리를 위한 분리막은 정수, 하수 및 오폐수 처리등 그 사용이 나날이 증가하고 있고, 막분리 공정의 경제성을 결정하는 막오염에 대한 연구가 활발히 이루어지고 있다. 분리막 표면의 오염 물질을 제거하기 위하여 표면유속의 증가, 분리막 회전, 진동 등에 의한 물리적 방법들이 사용되었고, 특히 근래에는 시설의 단순화 등을 이유로 침지형 모듈 이용이 증대되고 있으며[1] 특히 단위면적당 높은 막면적을 갖는 중공사막 침지형 모듈의 이용이 증가하고 있다.(중략)

  • PDF

하수 처리를 위한 침지형 MBR (Membrane Bio-Reactor)공정에서 공기를 이용한 최적 막 오염 제어

  • Baek, Byeong-Do;Sin, Dong-Hwan;Jang, In-Seong
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.515-516
    • /
    • 2008
  • MBR공정에서 막 오염을 제어하기 위하여 분리막 모듈에 원통형 관을 도입하여 각각 공기공급량과 MLSS농도, 분리막 면적에 따른 막 오염 정도를 나타내는 TMP를 분석하였다. 원통형 관을 사용하지 않은 대조군보다 원통형 관을 사용한 M$_1$과 M$_2$ 경우에 운전 종료 시점이 연장된 것을 확인할 수 있었고 공기공급량과 MLSS농도, 분리막 면적의 변화에 따른 TMP의 변화가 생기는 것을 확인할 수 있었다.

  • PDF

High-Rate Nitrogen Removal using a Submerged Module of Sulfur-Utilizing Denitrification (침지형 황 탈질 모듈을 이용한 고속의 질소제거)

  • Moon, Jin-Young;Hwang, Yong-Woo;Ga, Mi-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.429-437
    • /
    • 2007
  • This study aims to develop a sulfur-using denitrification process which is possible a renovation to advanced treatment plant submerging a simple module in activated sludge aeration tank. At first, the impact factor of sulfur-using denitrification was appreciated by the batch test. Secondly, reflecting a dissolved oxygen effect of sulfur-using denitrification that was confirmed by the batch test, in a continuous nitrification/sulfur-using denitrification, high-rate nitrogen removal reaction was induced at optimum condition controlling DO concentration according to phases. Also, inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. Result of batch test for sulfur-using denitrification, $NO_2{^-}N$ was lower for consumption of alkalinity and sulfur than that of $NO_3{^-}-N$. These results revealed the accordance of theoretical prediction. In continuous nitrification/sulfur-using denitrification experiment, actual wastewater was used as a influent, and influent nitrogen loading rates were increased 0.04, 0.07, 0.11, $0.14kg\;N/m^3-day$ by changing hydraulic retention times. At this time, nitrogen loading rates of packed sulfur were increased 0.23, 0.46, 0.69, $0.93kg\;N/m^3-day$. As a result, nitrification efficiency was about 100% and denitrification efficiency was 93, 81, 79, 72%. Accordingly, nitrogen removal was a high-rate. Also the module of sulfur-using denitrification covered with microfilter did not make a fouling phenomena according to increased flux. And the module was achieved effluent suspended solids of below 10 mg/L without a clarifier. In conclusion, it is possible a renovation to advanced treatment plant submerging a simple module packed sulfur in activated sludge aeration tank of traditional facilities. And the plant used the module packed sulfur is expected as a effective facilities of high-rate and the smallest.

Permeation Characteristics of the Submerged Membrane Module Using the Rotating Disks (회전원판을 이용한 침지형 분리막 모듈의 투과특성)

  • Chung Kun-Yong;Cho Young-Su;Kim Jong-Pyo
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The permeation experiments were carried out for the submerged membrane module equipped with self-designed rotating disks in order to determine the effect of fouling reduction and the optimum operating conditions as a function of operating time. Kaolin and bentonite particles were used to prepare various concentrations of feed solution. Every experiment was continued until 60 minutes at various rotating disk speeds up to 120 rpm. The suction pressure for kaolin solutions decreased to 28% by using rotating disk to decrease the fouling. Also, the optimum permeation flux decreased as kaolin concentration increased, and became 60 to 70 LMH for 0.4 wt% of kaolin solution. The suction pressure for bentonite experiment approached to 0 mmHg at 30 LMH and above 80 rpm rotating disk speed.

Separation of Protein from Degumming Solution by Utrafiltration Membrane (한외여과막을 이용한 단백질 정련액으로부터 단백질 분리)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young;Lee, Ki-Hoon
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.375-380
    • /
    • 2007
  • To recover sericin protein from by-product in silk production process, a polyethersulfone hollow fiber ultra-filtration membrane module was used. The soap in the degummed solution was precipitated by calcium chloride. The influence of membrane module of submerged and external type on membrane fouling was investigated. The effect of soap and protein on the membrane fouling in the external type membrane module was also studied. The removal of soap resulted in decreasing the membrane fouling. It was shown that the protein and the membrane were affected by the soap.

Evaluation of Tubular Type Non-woven Fabric Filter for Solid-liquid Separation in Activated Sludge Reactor (활성슬러지조내 부직포 여재 관형필터의 고액분리 특성 평가)

  • Seo, Gyu-Tae;Lee, Teak-Soon;Park, Young-Mi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.234-238
    • /
    • 2008
  • Coarse pore filter could be an alternative of membrane for solid-liquid separation in an activated sludge reactor because of inexpensive cost of the filter material and high flux at low filtration pressure. However such filter module has much less specific filtration area compared to the membrane. Therefore a certain effort is required to increase the specific filtration area in the module design of such coarse pore filter for solid-liquid separation in an activated sludge reactor. In this study, tubular type coarse pore filter was designed at various diameter and configuration. The filtration performance was investigated to separate solid in the activated sludge reactor for domestic wastewater treatment. Tubular type coarse pore filter module could be successfully applicable to solid separation in the activated sludge reactor. The design parameters were the tube diameter of 10mm and vertical installation. Smaller diameter of the tube caused faster increase of the filtration pressure because of the hydraulic head loss in the tube channel.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.