• 제목/요약/키워드: 침적입자

Search Result 97, Processing Time 0.025 seconds

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

Establishment of Release Limits for Airborne Effluent into the Environment Based on ALARA Concept (ALARA 개념(槪念)에 의한 기체상방사성물질(氣體狀放射性物質)의 환경방출한도(環境放出限度) 설정(設定))

  • Lee, Byung-Ki;Cha, Moon-Hoe;Nam, Soon-Kwon;Chang, Si-Young;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.50-63
    • /
    • 1985
  • A derivation of new release limit, named Derived Release Limit(DRL), into the atomsphere from a reference nuclear power plant has been performed on the basis of the new system of dose limitation recommended by the ICRP, instead of the (MPC)a limit which has been currently used until now as a general standard for radioactive effluents in Korea. In DRL Calculation, a Concentration Factor Method was applied, in which the concentrations of long-term routinely released radionuclides were in equilibrium with dose in environment under the steady state condition. The analytical model used in the exposure pathway analysis was the one which has been suggested by the USNRC and the exposure limits applied in this analysis were those recommended by the USEPA lately. In the exposure pathway analysis, all of the pathways are not considered and some may be excluded either because they are not applicable or their contribution to the exposure is insignificant compared with other pathways. In case, the environmental model developed in this study was applied to the Kori nuclear power plant as the reference power plant, the highest DRL value was calculated to be as $9.10{\times}10^6Ci/yr$ for Kr-85 in external whole body exposure from the semi-infinite radioactive cloud, while the lowest DRL value was observed 3.64Ci/yr for Co-60 in external whole body exposure from the contaminated ground, by the radioactive particulates. The most critical exposure pathway to an individual in the unrestricted area of interest (Kilchun-Ri, 1.3 km to the north of the release point) seems to be the exposure pathway from the contaminated ground and the most critical radionuclide in all pathways appears to be Co-60 in the same pathway. When comparing the actual release rate from KNU-l in 1982 with the DRL's obtained here the release of radionuclides from KNU-1 were much lower than the DRL's and it could be conclued that the exposure to an individual had been kept below the exposure limits recommended by the USEPA.

  • PDF

Snow Influence on the Chemical Characteristics of Winter Precipitation (강설이 겨울철 강수의 화학적 특성에 미치는 영향)

  • Kang, Gong-Unn;Kim, Nam-Song;Oh, Gyung-Jae;Shin, Dae-Yewn;Yu, Du-Cheol;Kim, Sang-Baek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • To know the differences in ionic compositions in rain and snow as well as snow influence on the chemical characteristics of winter precipitation, precipitation samples were collected by the wet-only automatic precipitation sample, in winter(November-February) in the Iksan located in the northwest of Chonbuk from 1995 to 2000. The samples were analyzed for concentrations of water-soluble ion species, in addition to pH and electrical conductivity. The mean pH of winter precipitation was 4.72. According to the type of winter precipitation, the mean pH of rain was 4.67 and lower than 5.05 in snow. The frequencies of pH below 5.0 in rain were about 73%, while those in snow were about 30%. Snow contained 3 times higher concentrations of sea salt ion components originated from seawater than did rain in winter, mainly $Cl^-,\;Na^+$, and $Mg^{2+}$. Neglecting sea salt ion components, $nss-SO_4^{2-}$ and $NO_3^-$ were important anions and $NH_4^+$ and $nss-Ca^{2+}$ were important cations in both of rain and snow. Concentrations of $nss-SO_4^{2-}$ was 1.3 times higher in rain than in snow, while those of $nss-Ca^{2+}$ and $NO_3^-$ were 1.5 and 1.3 times higher in snow, respectively. The mean equivalent concentration ratio of $nss-SO_4^{2-}/NO_3^-$ in winter precipitation were 2.4, which implied that the relative contribution of sulfuric and nitric acids to the precipitation acidity was 71% and 29%, respectively. The ratio in rain was 2.7 and higher than 1.5 in snow. These results suggest that the difference of $NO_3^-$ in rain and snow could be due to the more effective scavenging of $HNO_3$ vapor than particulate sulfate or nitrate by snow. The lower ratio in snow than rain is consistent with the measurement results of foreign other investigators and with scavenging theory of atmospheric aerosols. Although substantial $nss-SO_4^{2-}$ and $NO_3^-$ were observed in both of rain and snow, the corresponding presence of $NH_4^+,\;nss-Ca^{2+},\;nss-K^+$ suggested the significant neutralization of rain and snow. Differences in chemical composition of non-sea salt ions and neutralizing rapacity of $NH_4^+,\;nss-Ca^{2+}$, and $nss-K^+$ between rain and snow could explain the acidity difference of rain and snow. Snow affected that winter precipitation could be less acidic due to its higher neutralizing rapacity.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Unit Loadings of Heavy Metals by Non-point Sources - Case Study in a Valley Watershed - (비점원에 의한 중금속 원단위 부하량 - 곡간지 유역을 중심으로 -)

  • Kim, Jin-Ho;Han, Kuk-Heon;Lee, Jong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The study was carried out to estimate runoff loads of heavy metals in the valley watershed at the middle of South Korea, during farming season. There were no other pollution sources except agricultural activity. From 27 April 2006 to 31 October 2007, water samples were collected using two methods. The first method was regular sampling wherein water samples were taken every two weeks; and the other method was through regular sampling when water were collected during each rainfall event. Results showed that heavy metals were found in the water from the regular samples, and were highest during May and June. It was presumed that this might have been contributed by farming activities. Heavy metal concentration of the irregular samples was lower than regular samples. The correlation coefficient between each heavy metal of the regular samples were as follows: Fe-Al>Cr-Al>Fe-Cr>Mn-Fe. The correlation coefficient of the irregular samples were the following: Fe-Al>Fe-Cu is positive; and Pb-Cu>Ni-Al is negative. Measured pollutant loads of heavy metals in the valley watershed were : 2.047 kg $day^{-1}$ of Al, 0.008 kg $day^{-1}$ of Cd, 0.034 kg $day^{-1}$ of Cr, 0.311 kg $day^{-1}$ of Cu, 0.601 kg $day^{-1}$ of Fe, and 0.282 kg $day^{-1}$ of Zn in 2006; while in 2007, the following were observed: 2.535 kg $day^{-1}$ of Al, 0.026 kg $day^{-1}$ of Cd, 0.055 kg $day^{-1}$ of Cu, 0.727 kg $day^{-1}$ of Fe, and 0.317 kg $day^{-1}$ of Zn. In the analysis of data gathered, the loading rates of effluents from the valley watershed during the rainy season were : 79.8% of Al, 69.1% of Cu, 82.5% of Fe, and 69.1% of Zn in 2006; while 69.9% of Al, 67.5% of Cu, 70.4% of Fe, and 67.5% of Zn in 2007.

Monitoring the Change of Physical Properties of Traditional Dancheong Pigments (전통 단청안료 표면의 물리적 특성 변화 모니터링)

  • Kim, Ji Sun;Jeong, Hye Young;Byun, Doo-Jin;Yoo, Min Jae;Kim, Myoung Nam;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.549-561
    • /
    • 2020
  • This study aimed to assess the performance and life of nine natural mineral dancheong pigments: Seokganju, Jinsa, Hwangto, Jahwang, Wunghwang, Seokrok, Noerok, Seokcheong, and Baekto. The design of the accelerated weathering test considered the domestic climate characteristics and the location of Dancheong. Outdoor weathering tests were conducted at the Research Institute in Daejeon and the Sungnyemun Gate in Seoul to confirm the field reproducibility of the accelerated weathering test. Monitoring of the physical changes in pigments through accelerated and outdoor weathering tests are based on ultraviolet exposure dose. Despite small cracks at the beginning of the tests, the monitoring showed that Seokganju and Baekto had no marked physical changes, but the surface cracks of Jinsa and Seorok continue to expand. Hwangto and Noerok were marked with water or were resin stained, and the particles of Jahwang, Wunghwang, and Seokcheong had lost their luster. Despite the absolute difference in color change in each test, the final chromaticity change patterns of pigments were similar in that the color difference between Baekto and Noerok was below five, and Jina was above 28. The physical and surface color pigment changes were more concentrated in outdoor weathering tests than in accelerated tests, and the Seoul site was more intense than the Daejeon site. This is because outdoor weathering tests are exposed to severe variations of temperature and moisture or deposition of dust particles and, in the case of Seoul, the site is more exposed to the external environment than the Daejeon site.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF