• Title/Summary/Keyword: 친환경 에너지 기술

Search Result 353, Processing Time 0.027 seconds

Study of Miscibility of Natural Silk by Molecular Dynamics Calculation of Solubility Parameter (용해도 파라미터의 분자동역학 계산을 통한 천연 실크 소재의 혼화성 연구)

  • Im, Keunan;Choi, Kang-min;Leem, Jung Woo;Kim, Young L.;Park, Chi Hoon;Jang, Hae Nam
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2021
  • In recent years, polymer membranes, which are actively used in various industrial fields, have the advantage of being able to impart unique properties through the control of chemical structures and physical properties in the film-fabrication process, as well as through fabricating blend membranes mixed with various materials. In this study, the solubility parameter, which can be used as an index of miscibility with other materials, was calculated using molecular dynamics using a silkworm (Bombyx mori) silk polymer which has a wide potential to be used as an eco-friendly natural material. When the solubility parameter of polyvinylalcohol (PVA), which is also environmentally friendly and biocompatible, was calculated by molecular dynamics and compared with each other, it was confirmed that the two polymer materials had similar solubility parameter values. In conclusion, it was theoretically proved that the two polymers could blend well with each other, which was confirmed through experiments.

Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향)

  • Yoon, Ho-Seok;Jung, Won Suk;Choe, Myeong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.90-96
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

A Study on the Eco-friendly Housing in the Near future based on the Ecological Design (생태학적 디자인을 기반으로 한 근 미래형 친환경주택연구)

  • Choo, Jin;Yoo, Bo-Hyeon
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.105-118
    • /
    • 2005
  • Housing environment for human beings has been diversified and more convenient due to the development of high technology and civilization brought by industrialization in the 20th century. In the 21st century, how to overcome the ecological limit of biased development-centered advancement, that is, how to preserve and hand over a clean and healthy 'sustainable environment' to our next generations has been one of the most-talked about issues. Environmental symbiosis means a wider range of environmental harmony from micro-dimensional perspective to macro one. The three goals of a environmentally friendly house are to preserve global environment, to harmonize with the environment around, and to offer a healthy and comfortable living environment. From the point of view of environmental symbiosis, houses should be designed to save energy and natural resources for preservation of global environment, to collect such natural energy resources as solar heat and wind force, to recycle waste water, and recycle and reduce the amount of the waste matter. Now, the environmentally-friendly house became a new social mission that is difficult to not only challenge but also realize without conversion to a new paradigm, ecologism.

  • PDF

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage (효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화)

  • Go, Hyunju;Park, Yiseul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.

The Development of High Efficiency Tempering System using Microwave (마이크로파를 이용한 고 효율 해동 시스템 개발)

  • Cho, Kook-Hee;Park, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.69-74
    • /
    • 2009
  • The tempering system which is developed by this research which sees energy curtailment and from the environmental side which is essential for in hazard analysis critical control point. The tempering system with development experimented frozen pork and fish. As test result, frozen pork region was not thawed occurred plentifully. Like this the actual condition, the case of frozen fish is grind and the bulk and density uniformly was formed, the pork the density was dense and was thought with the fact that the temperature difference change is big. Also after tempering from measurement location center the temperature appeared substitutionally with the low-end thing. This central part of the frozene region is thought the impedance change appears few. To hereafter respects an impedance change is thought that has the necessity which will change the structure of tempering system.

Actual Cases and Analysis of IT Convergence for Green IT (그린 IT를 위한 IT 컨버전스 사례 분석에 관한 연구)

  • Lee, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.147-152
    • /
    • 2015
  • Eco-friendly or green is a key word which we use in our life. There are examples such as eco-friendly laundry detergent and agricultural products or green car and home, Due to the indiscriminate development, it was caused severe environmental pollution. Green IT is a necessary technology to solve the energy and environmental problems and to increase the productivity of corporations. Therefore, we studied contents related with green IT. The history for green IT has changed from 'Green of IT' to 'IT for Green'. Studies for 'IT for Green' progress extensively on today. In this paper, we described a transition progress and characteristics of green IT. Lastly, we analyzed smart work in the examples of the top.

The Analysis on Eco-friendly Technologies Effect Applied to SK Chemicals R&D Center (SK케미칼 연구소에 적용된 친환경 기술 적용 효과 분석 - 에너지 및 수자원 절감 적용 효과를 중심으로 -)

  • Yu, Ji-Yong;Lee, Yoo-Ha;Lee, Young-Ryul;Yang, Jae-Woong;Park, Hyun-Geun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.409-414
    • /
    • 2009
  • The SK Chemical R&D center is an eco-friendly building designed as top score in the GBCC(GREEN BUILDING CERTIFICATE CRITERIA). This building has applied various eco-friendly technologies such as energy /water resource cutdown, improvement of indoor quality and improvement of user convenience, etc through eco-friendly concept from the design phase. In this thesis, an economic efficiency evaluation has been performed on building energy cwater resource cutdown technologies among them and the results are as follows. The building energy has cut down about 40% compared to ordinary buildings and the investment recovery period was shown as about 5 years. The water resource has cut down about 63% compared to ordinary buildings and the investment recovery period was shown as about 10 years.

  • PDF

Multi-scale Simulation Approach on Lithiation of Silicon Electrodes

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.2-186.2
    • /
    • 2014
  • 최근 친환경 에너지에 대한 관심이 증폭되면서 리튬이차전지에 대한 연구가 활발히 진행되고 있다. 특히 음극(anode) 물질의 경우 기존의 흑연(graphite)보다 이론적 용량이 약 10배 이상 높은 실리콘(Silicon)에 대한 관심이 매우 높다. 하지만 Si의 경우 리튬 충전거동 시 400% 이상의 부피팽창으로 몇 번의 충전/방전 싸이클(cycle)에 전극이 파괴되는 문제점을 지니고 있다. 이를 극복하기 위해 Si 나노선이 고려되고 있다. 우수한 전극특성을 갖는 Si 소재를 개발하기 위해서는 원자단위에서 Si 나노선의 리튬 충전 메커니즘을 살펴보는 것이 매우 중요하다. 하지만 기존의 시뮬레이션 기법으로는 Si 나노선의 볼륨팽창에 관한 메커니즘과 리튬 충전과정에서의 상변화(결정질에서 비정질) 과정을 설명하기는 기술적으로 매우 힘들다. 고전적인 분자동역학 방법의 경우 실제 나노스케일을 고려할 수 있지만, empirical potential로는 원자들간의 화학반응을 제대로 묘사할 수 없다. 한편 양자역학에 기반을 둔 제일원리방법의 경우 계산의 복잡성으로 현재의 컴퓨터 환경에서는 나노스케일에서 원자들의 동역학적인 거동을 연구하기 매우 힘들다. 우리는 이러한 문제를 해결하기 위해 실제 나노스케일에서 원자간 화학반응을 예측할 수 있는 Si-Li 시스템의 Reactive force field를 개발하였고, 분자동역학 계산방법을 이용하여 Si 나노선의 Li 충전 메커니즘을 규명하였다.

  • PDF

A Study on the Development of the Technology of Evaluating the Performance of Energy - saving in the BIM-based Design Process in the Real Time Manner Focused on the Analysis of Coefficient of Overall Heat Transmission (BIM기반 건축물 설계 과정에서 실시간 에너지 성능 분석을 위한 기술 개발에 관한 연구 - 열관류율 분석을 중심으로)

  • Lee, Yun-Gil;Cho, Won-Jun
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • This study intended to introduce the method of designing an eco-friendly building based on BIM(Building Information Modeling) and BIM-based application. The proposed application aimed to generate the environmental performance of the designed alternative automatically in real-time manner in the process of architectural design. We focused on the feasibility of BIM-based eco-friendly design process and the applicability of the developed application for the architectural design practice. In this manner, in the end of paper, we proposed the so-call EcoBIM which is the performance evaluation module for the designed alternative using BIM in the real-time manner and the new design process with it. EcoBIM generate the coefficient of overall heat transmission of wall, roof and slab of the designed alternative with their physical characteristics such as thickness, thermal resistance and so on.