• Title/Summary/Keyword: 치환율

Search Result 1,042, Processing Time 0.025 seconds

Case Study on Upheaval Characteristics of Marine Soft Ground Improved by Granular Compaction Piles (쇄석다짐말뚝으로 보강된 해상 연약지반의 융기특성 사례분석)

  • Yea, Geu Guwen;Choi, Yong Kyu;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.137-145
    • /
    • 2011
  • The amount of material upheaved owing to the installation of a granular compaction pile (GCP) in the seabed was analyzed by a field execution. The amount of material upheaved was predicted by existing equations, proposed by the Korea Construction New-Technology Association (KCNET; 2003) and Shiomi and Kawamoto (1986), and compared with the amount measured by bathymetry in the field. As a result, the upheaval heights were found to show a clear increase with increasing replacement ratio. The measured amount was larger than the amount predicted by the equations, but the amount predicted from the equation proposed by KCNET (2003) was relatively close to the measured amount. The upheaval heights were found to be more sensitive to the replacement ratio than the installation depth. The increasing trends of the upheaval heights with the installation depth as predicted by the equation of KCNET (2003) were in agreement with the measured trends at a replacement ratio of 25%. As a result of comparing the coefficients of upheaval by the equations, the coefficients of upheaval determined by the equation of KCNET (2003) were larger than those determined by the equation proposed by Shiomi and Kawamoto (1986), which were relatively close to the measured trends. Specifically, the difference between results obtained by both these equations was large when the replacement ratio was relatively low.

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

Air Content, Workability and Bleeding Characteristics of Fresh Lightweight Aggregate Concrete (굳지 않은 경량골재 콘크리트의 공기량, 유동성 및 블리딩 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.559-566
    • /
    • 2010
  • Fifteen lightweight concrete mixes were tested to evaluate the effect of maximum size of coarse aggregate and the replacement level of natural sand on the various properties of fresh lightweight concrete. The different properties, such as water absorption against the elapsed time, pore size distribution and micro-structure of lightweight aggregates used, influencing on the workability of fresh concrete were also measured. Test results showed that the initial slump of lightweight concrete decreased with the increase of the replacement level of natural sand. The slump of all-lightweight concrete sharply decreased by around 80% of the initial slump after 30~60 minutes. The air content and bleeding rate of lightweight concrete were significantly affected by the replacement level of natural sand as well as the maximum size of coarse aggregates. Empirical equations recommended in ACI 211 and Korea concrete standard specifications underestimated the air content of the lightweight concrete, indicating that the underestimation increases with the decrease of the replacement level of natural sand. In addition, equations to predict the air content and bleeding rate of lightweight concrete were proposed based on the test results.

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

Derivation of Optimum GGBFS Replacement with Durability Design Parameters (내구성 설계 변수에 따른 최적 고로슬래그 미분말의 치환율 도출)

  • Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • GGBFS(Ground Granulated Blast Furnace Slag)-replacement is very effective for improving resistance to chloride attack and this can induce a long service life for RC(Reinforced Concrete) structures exposed to chlorides. In the work, the design parameters such as cover depth, surface chloride content, critical chloride content, and replacement ratio of GGBFS are considered, and optimum replacement ratio of GGBFS are derived with intended service life. The changes of surface chloride content and cover depth show 3.16~3.38 and 3.02~3.34 times of service life variation, which are most influencing parameters. Critical chloride content shows 1.53~1.57 times of service life variation regardless of w/b(Water to Binder) ratios. In the case of surface chloride content $18.0kg/m^3$, the most severe condition, cover depth over 70 mm and GGBFS replacement ratio over 42% are required with concrete containing w/b ratio under 0.42 for 100 years of intended service life. The condition of $13.0kg/m^3$, GGBFS replacement over 35% is required. For reasonable durability design, quantitative exterior condition and critical chloride content should be determined, and the criteria in Domestic Specification is evaluated to be conservative.

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Effect of Recycled Aggregates Powder on the Properties of Zero Cement Mortar Using the Recycled Fine Aggregates and Fly-Ash (순환잔골재와 플라이애시를 사용하는 무 시멘트 모르타르의 특성에 미치는 순환골재 미분말의 영향)

  • Park, Kyung-Taek;Son, Seok-Heon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • The purpose of this study was to investigate the influence of recycled aggregates powder (RP) contents on recycled aggregates (RA) using fly-ash (FA) mortar in a condition of zero cement targeting earth filling materials, and the results can be summarized as follows. First, there was a tendency that as RP contents increased, W/B and air contents increased also. In the case of compressive strength, the strength was hardly developed at the early age, which was prior to 14 days; however, with the starting point of 14 days of age, strength of around 1.5~2.0 MPa was developed when it arrived at 28 days. At a curing temperature of $20^{\circ}C$, the more RP contents increased, the more the compressive strength increased in comparison with FA 100% at all levels except RP 100 %, showing the highest compressive strength at RP 25 %. At a curing temperature of $35^{\circ}C$, the temperature-dependence appeared to be large, as the RP contents were decreased compared to the curing temperature of $20^{\circ}C$. In addition, based on SEM analysis, this study was able to confirm that a pozzolanic reaction formed by an alkali stimulus of RA with the lapse of certain days even in 100 percent FA, causing the densification of tissues, and with RP 25%, hydrate was created the most densely by the hydration of unhydrated cement particles and pozzolanic reaction of FA.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Numerical Study of Settlement Reduction Ratio for the Bottom Ash Mixture Compaction Pile (수치해석적 방법에 의한 저회혼합다짐말뚝의 침하저감비에 관한 연구)

  • Chu, Ickchan;Kim, Gooyoung;Do, Jongnam;Cho, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • In general, sand compaction pile(SCP) method and gravel compaction pile(GCP) method have been mainly used to reinforce soft soils such as soft clay or loose sandy ground. But the sand compaction pile method has problems such as lack of sand supply and destroying the nature while collecting sand, the gravel compaction pile method has a problem such as decreased permeability of the drainage material due to clogging. Recently, the study to replace sand with bottom ash which has similar engineering properties with sand is in active. As a fundamental research on bottom ash mixture compaction pile utilizing bottom ash, its behavioral characteristics depending on granular materials and replacement ratio has been simulated numerically. In particular, Settlement Reduction Ratio(SRR) according to the distance from the center of pile was calculated. The main findings were as follows. Change values of Mixture Compaction Pile's SRR according to granular materials showed similar patterns and stiffness of the composite soil is increased depending on the replacement ratio so SRR showed decreased patterns. Especially, when the replacement ratio is in 20~40%, it increase significantly. When the replacement ratio is over 40%, it increase slowly. When considering the economics, 30~40% replacement ratio is appropriate.

Effect of Emulsified Waste Oil on the Engineering Properties and Autogenous Shrinkage of the High Strength Concrete (유화처리된 폐식용유가 고강도 콘크리트의 공학적 특성 및 자기수축에 미치는 영향)

  • Han, Min-Cheol;Kim, Tae-Cheong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.62-69
    • /
    • 2012
  • This study investigates the engineering properties of the high strength concrete depending on dosages and types of shrinkage reduction agent. Test results showed that for the properties of fresh concrete, the addition of the conventional shrinkage reduction agent (SR) of 0.25% decreased slump flow up to 40% as compared with control concrete, whereas the addition of the emulsified waste cooking oil (EWCO) decreased slump flow of only 5% to 10%. Other properties of fresh concrete with the agents, namely air content, unit weight and setting time, were similar to the results of the control concrete. For the properties of hardened concrete, the compressive strength of the concrete with SR decreased at both early and later stage. However, the compressive strength of the concrete with EWCO was similar to the control concrete at early age, but decreased at later stage (up to 10% reduction at 28 days). For the effect of the agents on autogenous shrinkage of the concretes, the addition of EWCO decreased up to 33%, whereas that of SR decreased up to 29%. Hence, it can be said that the addition of EWCO in high strength concrete has an effect on reducing the autogenous shrinkage as compared with a conventional agent and only slight influence on the slump flow and air content of concrete. By taking all aspects of using EWCO, it is concluded that the optimum content of EWCO will be in the range of between 0.5% and 0.75%.

  • PDF