• Title/Summary/Keyword: 층서구조

Search Result 154, Processing Time 0.022 seconds

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh Sik;Park Cha-Hong;Yoo Hai-Soo;Han Sang-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.145-150
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction (toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age, After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Acoustic Facies in the Western South Sea, Korea (한국남서해역의 음향학적 퇴적상)

  • BAHNG, HYO KY;OH, JAE KYUNG
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.313-322
    • /
    • 1993
  • The Western south Sea of Korea can be divided into 4 acoustic facies (AF I-AF IV) according to the variations of acoustic characters. Typical acoustic characters revealed in high-resolution seismic profiles (3.5kHz) are prolonged, internal reflected, non-penetrated, and transparent types. These acoustic types probably controlled by bottom condition and sediment properties such as composition and compaction of sediments. Acoustic facies I is characterized by prolonged type which is produced by absorbing of acoustic signals on the coarse sediments including gravels and shell fragments and irregular bedforms. Acoustic facies II is characterized by internal reflected type which is probably produced by differential sediments compaction. Acoustic facies III is characterized by non-penetrated type caused by scattering of acoustic signals on the well sorted fine ad very fine sand sediments. Acoustic facies IV is characterized by transparent type with non-internal reflector in limited thickness. Acoustic types in high-resolution profiles provide important information not only about the stratigraphy of sub bottom but also abut the sedimentary processes in shallow sea.

  • PDF

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh, Sik;Park, Chan-Hong;Yoo, Hai-Soo;Han, Sang-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.131-135
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction(toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age. After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Flow Direction and Source Area of the Ipbong Andesite in Western Yeongdeok, Korea (영덕 서부 입봉안산암의 유향과 공급지역)

  • Hwang, Sang-Koo;Ham, Hee-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The Ipbong Andesite is a stratigraphic unit which is lain in the lowermost part of the Yucheon Group in the southeastern Yeongyang sbbasin. The Ipbong Andesite is lain on the Sinyangdong Formation and under the dacitic tuff, and consists in its lower andesitic tuffs and upper lavas. The andesitic lavas show some alignments of elongate vesicles filling with calcite amygdules and plagioclase microphenocrysts, and show rare imbrication of the microphenocrysts in vertical sections parallel to them. The flow directions which is measured from the flow indicators are laid along NNW-SSE trend in the eastern part and NNESSW in the southwestern part of the study area. Movement pattern from the flow lineations suggests that the Ipbong Andesite had a fanlike pattern by flowing southwards from the mid-northern part. Accordingly a small diorite stock in the mid-northern part area may probably be a source area of the Ipbong Andesite.

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: I. Stratigraphy and Structure (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: I. 층서 및 구조)

  • Kim In-Joon;Kee Won-Seo;Song Kyo-Young;Kim Bok-Ghul;Lee Sa-Ro;Lee Gyoo Ho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.437-457
    • /
    • 2004
  • The geology of the Kualakulun in the Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Tanjung Formation was deposited in low-and high-sinuosity channel networks developed on the proximal to distal delta plain and delta front forming southward paleoflow system, which, in turn, gradually change into shallow marine environment. Four main deformational phases are recognized: D1, folding of metamorphic rocks accompanied by development of S1 schistosity under regional metamorphic condition; D2, ductile shearing in Cretaceous granitoids; D3, folding of metamorphic rocks accompanied by S2 crenulation cleavage; D4, faulting under N-S compressional regime during Tertiary times, producing NE-trending sinistral and NW-trending dextral strike-slip faults and N-S to NNE-trending normal faults.

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Janggi Basins ; Geologic Structure in the Areas of Heunghae and Hyungsan River by Gravity Prospecting Method (포항 및 장기분지에 대한 고지자기, 층서 및 구조 연구; 중력탐사에 의한 홍해 및 형산강지역의 지질구조)

  • Min, Kyung Duck;Yun, Hyesu;Moon, Hi-Soo;Lee, Hyun Koo;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.351-358
    • /
    • 1992
  • The gravity measurement has been conducted at 327 station with an interval of 25 m along the survey lines of 1.6 km and 1.7 km traversing Hyungsan river and of 2.35 km and 2.42 km running N-S direction near Heunghae-eup in Pohang basin. Bouguer gravity anomalies were obtained, and geologic structure along four survey lines were interpreted by applying Fourier series and Talwani methods for two demensional body. A fault is in existence along the Hyungsan river, and northern block of it is displaced down by 150 m to 200 m relative to southern one. The thicknesses of Yeonil Group vary from 250 m to 550 m and from 150 m to 300 m in the northern and southern blocks of the fault, respectively. Another fault is in existence running E-W direction near Heunghae-eup, and its southern block is displaced down by about 250 m relative to its northern block. The thicknesses of Yeonil Group vary from 200 m to 400 m and from 500 m to 700 m in the southern and northern blocks of the fault, respectively. Above two faults are normal faults and make a graben structure, which results the age of rocks in the central region between the faults is younger than those of outside regions. This result coincides with that of paleontological study.

  • PDF

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (I): Development and Geochronology of Quaternary Marine Terraces (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(I): 제4기 해안단구 발달 및 지층서)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2012
  • This study investigates a neotectonic context of the past 5 Ma for the Otway Ranges along the southern Victoria coast, SE Australia by evaluating the distribution and development of marine terraces along the mountainous coastal area. Uplift rate derived from low terrace deposits using OSL dating method is determined to evaluate the extent to which mild intraplate tectonism has the capability to influence the geomorphic evolution of continental interiors. This study also investigates the stratigraphic relationship between Quaternary marine terraces and Pliocene strandlines, which suggests a change of tectonic activity in the Late Neogene. The intensified tectonic response is well addressed in terms of an increase of the Australian intraplate stress level due to the change of relative motion and increased forces in the boundary between the Australian and Pacific plate.

Geologic Structure of the Anatolian Peninsula: Tectonic Growth of Collisional Continental Margins (아나톨리아 반도의 지질구조: 대륙 충돌에 따른 구조적 성장)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.465-476
    • /
    • 2012
  • The Anatolia peninsula consists of several continental fragments that include the Pontide Block in north and the Anatolide-Touride Block in south as well as the Arabian Platform in southeast. These continental blocks were joined together into a single landmass in the late Tertiary. During most of the Phanerozoic these continental blocks were separated by paleo-oceans, such as Paleo-Tethys and Neo-Tethys. The Pontide Block in north show Laurasian affinities, and was only slightly affected by the Alpide orogeny; they preserve evidence for the Variscan and Cimmeride orogenies. The Pontic Block is composed of the Strandja, Istanbul and Sakarya zones that were amalgamated into a single terrane by the mid Cretaceous times. The Anatolide-Tauride Block in south shows Gondwana affinities but was separated from Gondwana in the Triassic and formed an extensive carbonate platform during the Mesozoic. The Anatolide-Tauride Block was intensely deformed and partly metamorphosed during the Alpide orogeny; this leads to the subdivision of the Anatolide-Tauride Block into several zones on the basis of the type and age of metamorphism and deformation. The Arabian Platform in southeast forms the northernmost extension of the Arabian Plate that shows a stratigraphy similar to the Anatolide-Tauride Block with a clastic-carbonate dominated Palaeozoic and a carbonate dominated Mesozoic succession. A new tectonic era started in Anatolia Peninsula in the Oligocene-Miocene after the final amalgamation of these continental blocks and plate. This neotectonic phase is characterized by extension, and strike-slip faulting, continental sedimentation, and widespread calcalkaline magmatism, which played a very important role in producing beautiful landscapes of the Anatolia Peninsula today.

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.