• Title/Summary/Keyword: 층간 파괴인성치

Search Result 18, Processing Time 0.021 seconds

Interlaminar Fracture Toughness for Composite Materials (복합재료의 층간파괴인성)

  • 이강용;권순만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1479-1485
    • /
    • 1991
  • 본 연구에서는 고차판이론(higher order shear deformable plate theory)을 사용하여 DCB시편을 보형상이 아닌 실제의 얇은 판으로 해석하여 새로운 에너지해방률 식을 제시하고자 한다.한편, 이의 타당성을 입증하기 위하여 Gr/Ep 및 APC-2 복합 재료로 ASTM D30.02 round robin의 제안 방법에 의해 층간파괴인성치를 구하고, 또 이 강용이 제안한 Ae법에 의한 금속의 파괴인성치 결정법을 참고로 하여 미세파괴 초창기 의 층간파괴인성치를 결정하여 이론결과와 비교 검토한다.

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

A Study on Mode I Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드 I 층간파괴인성치에 관한 연구)

  • 김형진;곽대원;김재동;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.262-268
    • /
    • 2003
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode I interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) specimen. In the range of loading rate 0.2-20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (G_IC). The value of $G_IC$ for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of $G_IC/$ are highest with the increasing initial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF

A Study on the Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 층간파괴인성치에 관한 연구)

  • Kim, Hyung-Jin;Gwark, Dae-Won;Lee, Hern-Sik;Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.328-336
    • /
    • 2004
  • This paper describes the effect of loading rate, specimen geometries and material properties for ModeⅠ and Mode Ⅱ interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. In the range of loading rate 0.2~20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (Gc).The value of Gc for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of Gc are highest with the increasing intial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF.

Influence of Layer Thickness on the Mechanical Properties in the Laminated Composites (적층형 복합재료에서 Unit Ply의 두께가 기계적 성질에 미치는 영향)

  • Mun, Chang-Gwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.979-987
    • /
    • 1995
  • This study has been investigated the Influence of layer thickness on the mechanical properties of cross laminated carbon fiber/epoxy composites. And also the difference of mechanical properties between cross laminated composites of unidirectional prepreg and fabric prepreg has been investigated. Experimental results are showed that the Interlamina Shear Strength(ILSS) of cross laminated carbon fiber/epoxy composites decreased with increasing thickness of unit ply and the decree of delamination in the laminated composites increased as ILSS decreased. Fracture toughness and impact values were found to increase as delamination occurs to some extent in the laminated composites. It Is also shown thats mechanical properties of cross laminates from unidirectional prepreg were better than those of cross laminates from fabric prepreg.

  • PDF

A Study on the Effect of Molding Pressure on the Interlaminar Fracture Toughness (층간파괴인성치에 미치는 성형압력의 영향에 관한 연구)

  • 김형진;김재동;고성위
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1140-1147
    • /
    • 2001
  • This paper describes the effect of various molding pressure for Mode I. Mode II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using double cantilever beam(DCB), end notched flexure(ENF) and end loaded split(ELS) Specimen. The value of $G_{IC}$, $G_{IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa, however it shows highest value under 307kPa molding pressure, The SEM photographs show good fiber distribution and interfacial bonding of composites when the molding pressure is the 307kPa.

  • PDF

A Study on Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastic Composites (CFRP 복합재료의 혼합모드 I/II 층간파괴인성치에 관한 연구)

  • Kim, H.J.;Park, M.I.;Kim, J.D.;Koh, S.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.48-54
    • /
    • 2000
  • This paper describes the effect of molding pressure, specimen geometries for Mixed Mode I/II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using asymmetrical double cantilever beam(ADCB) specimen. The value of $G_{I/IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa. However it shows the highest value under 307 kPa molding pressure. The effect of $G_{I/IIC}$ due to the change of initial crack length of ADCB specimen was almost negligible in this study. It turns out that the condition for mix mode quasi-static crack growth in ADCB specimen is the ratio of the crack length to that of the specimen, i.e., ${\alpha}/L<0.4$.

  • PDF

A Study on the Effect of Fiber Orientation on the Interlaminar Fracture Toughness (층간파괴인성치에 대한 섬유방향의 영향에 관한 연구)

  • Lee, Jung-Kyu;Um, Yoon-Sung;Kim, Hyung-Jin;Koh, Sung-Wi
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 1995
  • The investigate the effect of fiber orientation on the interlaminar fracture toughness of carbon fiber reinforced plastics three prepregs which are domestic products are used in this paper. Those are used for the unidirectional composites, but only one is used for the cross-ply laminate composites which is molded $[0/90]_{6s},\;[0/45]_{6s},\;and\;[0/45/90]_{4s}$. The specimens used for the mode I and mode II Tests are DCB and ENF samples are examined by scanning electron microscope(SEM). The value of $G_{IC}$ is almost same when modified three calculating methods are applied. The highest value of $G_{IC}$at crack initiation is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45/90]_{4s}$ interlaminar. The highest value of $G_{IIC}$ at crack initiation, however, is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45]_{6s}$. The photographs of SEM show a difference behaviour between mode I and mode II fracture surface.

  • PDF

Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading (모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측)

  • Kang, Seunggu;Shin, Kwangbok;Lee, HyunSoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.930-932
    • /
    • 2017
  • In this paper, prediction of progressive interlaminar fracture in curved composite laminates under mode I loading was described. The prediction of progressive interlaminar fracture in curved composite laminates was conducted using cohesive zone model(CZM) in ABAQUS V6.13. Interlaminar fracture toughness used as input parameters in CZM was obtained through mode I, mode II and mixed mode I/II tests. The behaviors of progressive interlaminar fracture for curved composite laminates showed a good agreement between experimental and numerical results.

  • PDF