• Title/Summary/Keyword: 층간전단시편

Search Result 13, Processing Time 0.022 seconds

Failure Pressure Prediction of Composite T-Joint for Hydrodynamic Ram Test (수압램 시험을 위한 복합재 T-Joint의 파손 압력 예측)

  • Kim, Dong-Geon;Go, Eun-Su;Kim, In-Gul;Woo, Kyung-Sik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Aircraft wing structure is used as a fuel tank containing the fluid. Fuel tank and joint parts are consists of composite structure. Hydrodynamic Ram(HRAM) effect occurs when the high speed object pass through the aircraft wing or explosion and the high pressure are generated in the fuel tank by HRAM effect. High pressure can cause failure of the fuel tank and the joint parts as well as the aircraft wing structure. To ensure the aircraft survivability design, we shall examine the behavior of the joint parts in HRAM effect. In this study, static tensile tests were conducted on four kind of the composite T-Joints. The failure behavior of the composite T-joint was examined by strain gauges and high speed camera. We examine the validity of the Finite Element Modeling by comparing the results of FEA and static tensile tests. The failure stresses and failure pressure of the composite T-Joint were calculated by FEA.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

IS AN OXYGEN INHIBITION LAYER ESSENTIAL FOR THE INTERFACIAL BONDING BETWEEN RESIN COMPOSITE LAYERS? (Layering시 복합레진 층간의 계면 결합에서 oxygen inhibition layer가 필수적인가?)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.405-412
    • /
    • 2008
  • This study was aimed to investigate whether an oxygen inhibition layer (OIL) is essential for the interfacial bonding between resin composite layers or not. A composite (Z-250, 3M ESPE) was filled in two layers using two aluminum plate molds with a hole of 3.7 mm diameter. The surface of first layer of cured composite was prepared by one of five methods as followings, thereafter second layer of composite was filled and cured: Group 1 - OIL is allowed to remain on the surface of cured composite; Group 2 - OIL was removed by rubbing with acetone-soaked cotton; Group 3 - formation of the OIL was inhibited using a Mylar strip; Group 4 - OIL was covered with glycerin and light-cured; Group 5 (control) - composite was bulk-filled in a layer. The interfacial shear bond strength between two layers was tested and the fracture modes were observed. To investigate the propagation of polymerization reaction from active area having a photo-initiator to inactive area without the initiator, a flowable composite (Aelite Flow) or an adhesive resin (Adhesive of ScotchBond Multipurpose) was placed over an experimental composite (Exp_Com) which does not include a photoinitiator and light-cured. After sectioning the specimen, the cured thickness of the Exp_Com was measured. The bond strength of group 2, 3 and 4 did not show statistically significant difference with group 1. Groups 3 and 4 were not statistically significant different with control group 5. The cured thicknesses of Exp_Com under the flowable resin and adhesive resin were 20.95 (0.90) urn and 42.13 (2.09), respectively.