• Title/Summary/Keyword: 측정로봇

Search Result 700, Processing Time 0.029 seconds

Two-Dimensional Depth Data Measurement using an Active Omni-Directional Range Sensor (전방향 능동 거리 센서를 이용한 2차원 거리 측정)

  • Joung, In-Soo;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • Most autonomous mobile robots view only things in front of then, and as a result, they may collide with objects moving from the side or behind. To overcome this problem, an active omni-directional range sensor system has been built that can obtain an omni-directional depth map through the use of a laser conic plane and a conic mirror. In the navigation of the mobile robot, the proposed sensor system produces a laser conic plane by rotating the laser point source at high speed: this creates a two-dimensional depth map, in real time, once an image is captured. The results obtained from experiment show that the proposed sensor system is very efficient, and can be utilized for navigation of mobile robot in an unknown environment.

  • PDF

Best Measurement Capability and Standard Test Facility for the Water-level Gauges (수위계 표준시험장치 개발 및 최고측정능력에 관한 연구)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1012-1017
    • /
    • 2007
  • Rain data and water-level data are importantly used for dam operation at flood period. Because dams are directly controlled by the water-level data, the characteristic of the water-level gauges is necessary to be managed. Thus, we developed the standard test facility and method for testing the water-level gauges which are a float type, a supersonic type and a radar type. And we calculated the uncertainty of the standard test facility to maintain the accuracy of water-level gauges. Through development of this facility, we could obtain the characteristics and the calibration factor of the water-level gauges. And, this study showed that the standard test facility can be widely used for dam operation and basin management.

Development of Ranging Sensor Based on Laser Structured Light Image (레이저 구조광 영상기반 거리측정 센서 개발)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.309-314
    • /
    • 2015
  • In this study, an embedded ranging system based on a laser structured light image is developed. The distance measurement by the structured light image processing has efficient computation because the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise and real-time laser structured light image processing, a bandpass optical filter is adopted in this study. The proposed ranging system has an embedded image processor performing the whole image processing and distance measurement, and so reduces the computational burden in the main control system. A system calibration algorithm is presented to compensate for the lens distortion.

Development of a Sensor System for Real-Time Posture Measurement of Mobile Robots (이동 로봇의 실시간 자세 추정을 위한 센서 시스템의 개발)

  • 이상룡;권승만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2191-2204
    • /
    • 1993
  • A sensor system has been developed to measure the posture(position and orientation) of mobile robots working in industrial environments. The proposed sensor system consists of a CCD camera, retro-reflective landmarks, a strobe unit and an image processing board. The proposed hardware system can be built in economic price compared to commercial vision systems. The system has the capability of measuring the posture of mobile robots within 60 msec when a 386 personal computer is used as the host computer. The experimental results demonstrated a remarkable performance of the proposed sensor system in the posture measurement of mobile robots - the average error in position is less than 3 mm and the average error in orientation is less than 1.5.

Localization of Mobile Robot Using Multi IR Range Sensors (다중 IR 거리센서를 이용한 이동로봇의 자기위치 인식)

  • Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.744-748
    • /
    • 2007
  • In this paper, a new localization method of indoor mobile robot using multi IR(infrared) range sensors is proposed. Each IR range sensor detects the edge of obstacles and wall using the acquired range data. The environment map is built by the merging process of the detected edge data of each sensor. The performance of proposed system is verified by the comparison of the real environment and the detected map in experiments.

A Study on Observability of Model Parameters for Robot Calibration (로봇 캘리브레이션을 위한 모델 파라미터의 관측성 연구)

  • 범진환;양수상;임생기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.64-71
    • /
    • 1997
  • Objective of calibration is to find out the accurate kinematic relationships between robot joint angles and the position of the end-effector by estimating accurate model parameters defining the kinematic function. Estimating the model parameters requires measurement of the end-effector position at a number of different robot configurations. This paper studies the implication of measurement configurations in robot calibration. For selecting appropriate measurement configurations in robot calibration, an index is defined to measure the observability of the model parameters with respect to a set of robot configurations. It is found that, as the observability index of the selected measurement configurations increase the attribution of the position errors to the parameter errors becomes dominant while the effects of the measurement and unmodeled errors are less significant; consequently better estimation of parameter errors is expected. To demonstrate the implication of the observability measure in robot calibration, computer simulations are performed and their results are discussed.

  • PDF

Calibation and Compensation for the Kinematic Error in Robot Manipulatior (로봇의 기구학적 오차측정과 보상에 관한 연구)

  • 이종신;임성호;조희상;이의훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.545-549
    • /
    • 1993
  • This paper presents the method of calibrating and compensating for the kinematic errors in robot manipulators. A calibration model is developed to represent any geometric errors in the manipulator's structure. A calibration jig is used to find the values of these kinematic errors in the end-effector's position and a calibration algormined for a SSR-6 robot manipulator developed by Samsung Heavy Industry, Daeduk R & D Center. Through this experiment the maximun kinematic error is reduced from 10mm to 0.4mm

  • PDF

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Smoothing and Prediction of Measurement in INS/GPS Integrated Kalman Filter (INS/GPS 결합 칼만필터의 측정치 스무딩 및 예측)

  • Lee, Tae-Gyu;Kim, Gwang-Jin;Je, Chang-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.944-952
    • /
    • 2001
  • Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it is desired to combine INS with external aids such as GPS. However GPS informations have a randomly abrupt jump due to a sudden corruption of the received satellite signals and environment, and moreover GPS can\`t provide navigation solutions. In this paper, smoothing and prediction schemes are proposed for GPS`s jump or unavailable GPS. The smoothing algorithm which is designed as a scalar adaptive filter, smooths abrupt jump. The prediction algorithm which is proved by Schuler error model of INS, estimates INS error in appropriate time. The outputs of proposed algorithm apply stable measurements to GPS aided INS Kalman filter. Simulations show that the proposed algorithm can effectively remove measurement jump and predict INS error.

  • PDF

Concentration Measurement of Alcohol Solution Using an On-Line Refractometer (온라인 굴절계를 이용한 알코올 농도와 측정)

  • Ham, Tae-Won;Kim, Young-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.427-431
    • /
    • 2001
  • An on-line refractometer made of easily obtainable materials is built to determine the concentration of an alcohol solution, and its performance is examined by applying to the system of ethanol and water. Since the refractive index and the temperature are measured simultaneously, it is possible to compensate the effect of temperature which is not available with an existing on-line refeactometer. Therefore, it can be implemented in the application of process control. The experimental outcome indicates that the home-made refractometer has satisfactory reproducibility and reasonable accuracy for the industrial application.

  • PDF