• Title/Summary/Keyword: 측면전도열손실

Search Result 4, Processing Time 0.018 seconds

Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame (저신장율 대향류확산화염에서 에지화염 진동불안정성)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Song-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.295-298
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation. Edge flame oscillations in low strain rate flames are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames.

  • PDF

The Effect of Inside and Outside Fluids on the Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화에 미치는 내 외 유체의 영향)

  • Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.14-22
    • /
    • 2007
  • A reversed trapezoidal fin with variable lateral surface slope is optimized using a two-dimensional analytic method. For a fin base boundary condition, convection from the inside fluid to the inside wall and conduction from the inside wall to the fin base are considered. Heat loss from the fin tip surface is not ignored. The maximum heat loss at the practical fin length, the corresponding optimum fin efficiency, fin length and fin base height are presented as a function of the fin inside and outside convection characteristic numbers. One of the results shows that the optimum fin shape becomes 'fatter and shorter' as the ratio of fin tip height to base height increases.

Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin (비대칭 사다리꼴 핀의 온도분포와 열손실 해석)

  • Kang, Hyung-Suk;Song, Nyeon-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • The temperature distribution of an asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For this asymmetric fin, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered simultaneously. The temperature profile with the variation of dimensionless fin length and height coordinates is shown. Also, the temperature variation at the bottom tip of the fin is presented as a function of the fin shape factor. Heat losses through the fin base and from each side are compared for variations in fin length. One of the results shows that temperature at the fin bottom tip decreases linearly as the fin shape factor increases.

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified