• Title/Summary/Keyword: 취약도함수

Search Result 49, Processing Time 0.036 seconds

Parameter Analysis of the Seismic Fragility Function for URM Buildings Using Capacity Spectrum Analysis (역량스펙트럼 해석에 의한 비보강 조적조 건축물의 지진취약도함수 매개변수 분석)

  • Lee, Jung-Han;Park, Min-Kyu;Kim, Hye-Won;Jung, Woo-Young;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 본 연구는 HAZUS에서 제시하고 있는 비보강 조적조 건축물의 구조적 손상상태에 대한 지진취약도함수와 관련하여 층간변위율 및 스펙트럼 변위 등의 매개변수를 평가하고 또한 국내 상황에 적합한 기존 비보강 조적조 건축물의 지진취약도곡선의 도출을 목적으로 하였다. 국내 상황을 고려한 지진피해를 추정하기 위하여 먼저 기존 비보강 조적조 건축물의 현황파악 및 지진취약도함수 산출방법을 분석하였다. 일반적으로 HAZUS에서 제시하고 있는 지진취약도함수는 역량스펙트럼을 변환시킨 가속도-변위응답 스펙트럼법을 기본적으로 사용하는 상황으로 국내 기존 비보강 조적조 건축물에 대한 지진취약도함수 개발을 위하여 Midas GEN Ver.741 구조해석프로그램을 사용하여 실제 23개동의 비보강 조적조 건축물을 대상으로 역량스펙트럼 해석을 수행하였다. 연구결과를 통하여 지진취약도함수의 주요 매개변수인 손상상태별 층간변위율 및 스펙트럼 변위를 제시하였다.

  • PDF

A Study on Vulnerability Function of Residential Building Using Expert Opinion (전문가의견을 활용한 주거건물 손상함수 개발)

  • Kim, Gilho;Choi, Cheonkyu;Hong, Seungjin;Kim, Kyungtak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.339-339
    • /
    • 2017
  • 손상함수란 건물, 차량, 농작물 등과 같은 피해대상물에 재난강도에 따른 취약도(vulnerability)를 정량화한 함수로, 재난리스크 모델에서 널리 사용되는 개념이다. 홍수재난에서 손상함수는 일반적으로 피해지역에서 조사된 경험적 피해자료(empirical data)를 활용하거나, 표준화된 피해대상물에 대한 손상성을 전문가의 의견(expert opinion)을 참고하여 개발된다. 이때, 취약도를 설명하는 설명변수는 일반적으로 침수심(inundation depth)이 사용되며, 그에 따른 취약도는 손상률(percent damage)로서 상대함수 형태가 일반적이다. 본 연구는 주거건물(residential building)에 대한 손상함수 개발을 위해 자연재난 손해사정 경력자(8인)를 대상으로 표준화된 주거건물(단독주택, 아파트, 연립/다세대주택)에 대해 침수에 따른 건물 손상성을 조사하였다. 주거건물 손상성을 설명하는 최대범위는 건물내부 바닥고를 기준으로 침수심 3m까지이며, 침수심 변화에 따른 손상성을 건물신축 공종에 따라 질의하고 이를 종합하였다. 조사과정은 (1) 표준건물에 대한 정의, (2) 공종별 침수에 따른 손상여부 질의, (3) 공종별 최대 손상률 평가 및 주요 피해내역 토의, (4) 공종별 침수심에 따른 손상률 평가, (5) 결과종합의 단계로 진행되었고, 이를 통해 주거건물 유형에 따른 손상함수를 개발할 수 있었다. 본 연구에서 개발된 손상함수는 다양한 침수높이에서 주거건물에 대한 취약도를 설명하는 데 장점이 있으나, 그 결과는 향후 홍수피해지역을 대상으로 수집된 다양한 피해조사 결과와 비교하여 보완될 필요가 있다.

  • PDF

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

Fragility Assessment of Agricultural Facilities Subjected to Volcanic Ash Fall Hazards (농업시설물에 대한 화산재 취약도 평가)

  • Ham, Hee Jung;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • This paper presents findings from the assessment of the volcanic ash fragility for multi-hazard resisting vinyl greenhouse and livestock shed among the agricultural facilities. The volcanic ash fragility was evaluated by using a combination of the FOSM (first-order second-moment) method, available statistics of volcanic load, facility specifications, and building code. In this study, the evaluated volcanic ash fragilities represent the conditional probability of failure of the agricultural facilities over the full range of volcanic ash loads. For the evaluation, 6 types(ie., 2 single span, 2 tree crop, and 2 double span types) of multi-hazard resisting vinyl greenhouses and 3 types(ie., standard, coast, and mountain types) of livestock sheds are considered. All volcanic ash fragilities estimated in this study were fitted by using parameters of the GEV(generalized extreme value) distribution function, and the obtained parameters were complied into a database to be used in future. The volcanic ash fragilities obtained in this study are planning to be used to evaluate risk by volcanic ash when Mt. Baekdu erupts.

Evaluation of seismic fragility models for cut-and-cover railway tunnels (개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • A weighted linear combination of seismic fragility models previously developed for cut-and-cover railway tunnels was presented and the appropriateness of the combined model was evaluated. The seismic fragility function is expressed in the form of a cumulative probability function of the lognormal distribution based on the peak ground acceleration. The model uncertainty can be reduced by combining models independently developed. Equal weight is applied to four models. The new seismic fragility function was developed for each damage level by determining the median and standard deviation, which are model metrics. Comparing fragility curves developed for other bored tunnels, cut-and-cover tunnels for high-speed railway system have a similar level of fragility. We postulated that this is due to the high seismic design standard for high-speed railway tunnel.

A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use (기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구)

  • Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.

Efficient Similarity Analysis Methods for Same Open Source Functions in Different Versions (서로 다른 버전의 동일 오픈소스 함수 간 효율적인 유사도 분석 기법)

  • Kim, Yeongcheol;Cho, Eun-Sun
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1019-1025
    • /
    • 2017
  • Binary similarity analysis is used in vulnerability analysis, malicious code analysis, and plagiarism detection. Proving that a function is equal to a well-known safe functions of different versions through similarity analysis can help to improve the efficiency of the binary code analysis of malicious behavior as well as the efficiency of vulnerability analysis. However, few studies have been carried out on similarity analysis of the same function of different versions. In this paper, we analyze the similarity of function units through various methods based on extractable function information from binary code, and find a way to analyze efficiently with less time. In particular, we perform a comparative analysis of the different versions of the OpenSSL library to determine the way in which similar functions are detected even when the versions differ.

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF