• Title/Summary/Keyword: 취성적 파괴

Search Result 309, Processing Time 0.026 seconds

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with High-Strength Bars(1) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(1))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Heo, Byung-Wook;Na, Jung-Min;Oh, Young-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.527-534
    • /
    • 2006
  • This paper outlines a new strengthening technique for concrete beams using externally unbended high-strength bars. The advantages of proposed method lie in speed and simplicity of construction compared to the alternative strengthening method. Externally unbended reinforcement retains many of the advantages over external unbended prestressed tendons. It eliminates time consuming stressing operations. Clearance requirements around anchorages are reduced as access is not required for prestressing jacks. Test results of eight specimens on reinforced concrete beams using different reinforcement materials such as carbon fiber sheet, steel plate and high-tension bar are reported. The beam strengthened by carbon fiber sheet showed a brittle failure mode due to the separation of fiber. As a result of draped profile of external bar, the maximum strength of the beam were increased by up to 212 percent and the deflections were reduced by up to 65 percent. Test results show that the beams reinforced with high-tension bar are superior to reference specimens, especially for the strength and deformation capacity.

An Experimental Study on the Hysteresis Behavior of WUF-B Beam-Column Connection using SN Steel (건축구조용강재(SN490) 조립 H형강 기둥-보 접합부의 이력거동에 관한 실험적 연구)

  • Kim, Sun Hee;Lee, Seong Hui;Kim, Jin Ho;Kim, Dae Jung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • The brittle failure where is occurred the welding position of column-beam flange of WUF-B connection that consider about a seismic detail possess a superior ductility capacity before Northridge earthquake 1994, require newly study about WUF-B connection. SAC Steel Project suggests a seismic detail to FEMA-350 by supporting of FEMA. It revise shape of weld access holes of WUF-B connection, welding processand welding material etc, In spite of these revision, AISC Seismic Provisions (2005) prescribe WUF-B connection using an only OMF. Recently in Korea, as the earthquake of about seismic intensity 5 occur, the necessity of revision for connection seismic detail comes to the front in Korea and FEMA-350 connection seismic details are going to include in KBC-2008 as it is. In this study, two column-beam connection specimens were marked by using SM490, SN490 built-up H-section, and based on WUF-B detail prescription of FEMA350. The parameters of the specimens are types of steel (SM, SN), and evaluate the capacities of structure and seismic by experiment. Finally we confirm a superior ductility capacity aboutspecimens JB-1 and JB-2, using SM490 and SN490,and these specimens had sufficient OMF and SMF seismic capacity, as indicated in AISC Seismic Provisions (2005).

Drop reliability evaluation of Sn-3.0Ag-0.5Cu solder joint with OSP and ENIG surface finishes (OSP.ENIG 표면 처리된 기판과 Sn-3.0Ag-0.5Cu 솔더 접합부의 낙하충격 신뢰성 평가)

  • Ha, Sang-Ok;Ha, Sang-Su;Lee, Jong-Bum;Yoon, Jeong-Won;Park, Jai-Hyun;Chu, Yong-Chul;Lee, Jun-Hee;Kim, Sung-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The use of portable devices has created the need for new reliability criterion of drop impact tests because of the tendency to accidentally drop in the use of these devices. The effects of different PCB surface finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) and high temperature storage (HTS) test on the drop reliability were studied. Various drop test conditions were used to evaluate a drop reliability of assemblies to endure such impact and shock load. In the case of the as-reflowed samples (no HTS test), the SAC/OSP boards exhibited a better drop impact reliability than that of SAC/ENIG. However, the reverse was true if HTS test is performed. In addition, significant decrease of drop reliability was observed for both SAC/ENIG and SAC/OSP assemblies after HTS test. It was also observed that the thickness of intermetallic compound layer do play an important role in the brittle fracture of drop test.

  • PDF

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

Analysis of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Shaped Steel with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 바닥판과 역T형 강재 합성보의 휨거동 해석)

  • Yoo, Sung-Won;Yang, In-Hwan;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.185-193
    • /
    • 2015
  • Ultra high performance concrete (UHPC) has been developed to overcome the low tensile strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Thermal and Mechanical Properties of Rapidly Solidified Zr-Ni-Cu-Al-Ti Alloy (급냉응고법으로 제조한 Zr-Ni-Cu-Al-Ti 합금의 열적, 기계적 성질)

  • Choe, Ik-Seok;Han, Tae-Gyo;Ji, Yong-Gwon;Im, Byeong-Mun;Kim, Yeong-Hwan;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2001
  • The thermal and mechanical properties of amorphous Z $r_{62-x}$N $i_{10}$C $u_{20}$A $l_{8}$ $Ti_{x}$ (x=3, 6, 9at%) alloys were investigated. The crystallization process was confirmed as amorphous longrightarrow amorphous + Z $r_2$A $l_3$+ Zr + (Ni,Ti) longrightarrow Z $r_2$Cu + Al + (Ni,Ti) for 3at%Ti, amorphous longrightarrow amorphous + Al longrightarrow $Al_2$Ti + NiZr + CuTi for 6at%Ti and amorphous longrightarrow amorphous + Zr + Al longrightarrow Zr + $Al_2$Zr + Al $Ti_3$+ CuTi for 9at%Ti. lickers hardness ( $H_{v}$ ) increased with increasing volume fraction( $V_{f}$ ) of pricipitates for all concerned compositions. Tensile fracture strength ($\sigma_{f}$ ) showed a maximum value 1219MPa at $V_{f}$ = 38% for 3at%Ti, 1203MPa at $V_{f}$ = 2% for 6at%Ti and 1350MPa at $V_{f}$ = 5% for 9at%Ti. The $\sigma_{f}$ was rapidly decreased after showing the maximum value. The $V_{f}$ corresponding to rapidly decreased $\sigma_{f}$ coincided with the $V_{f}$ transited from ductile to brittle fracture surface.ace.

  • PDF

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.