• Title/Summary/Keyword: 췌장베타세포

Search Result 34, Processing Time 0.033 seconds

Effect of Palmiwon on the Streptozotocin induced Prediabetic Model in Panceratic Bita Cells (췌장베타세포에서 스트렙토초토신으로 유도한 당뇨병 실험 모델에 대한 팔미원의 영향)

  • 이인순;이인자
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The aim of the present study was to investigate the effect of Palmiwon on the type 1-prediabetic models induced by streptozotocin (STZ) in RINm5F cells and HIT-T15 cells. Palmiwon increased the cell proliferation and insulin release when pre- and post-treated for the STZ-exposed pancreatic beta cells. The cell proliferation and insulin release of these beta cells were measured by $^3$H-thymidine uptake and RIA, respectively. We also analyzed nutrients such as sugars, fatty acid and amino acids and minerals containing in Palmiwon using by gas chromatography, amino acid analyzer and AA spectrometer, respectively. Palmiwon seems to have protective and recovery properties on the prediabetic model in cellular level, which were ascribe to various nutrients and minerals containing in Palmiwon. From these results, it could be suggested that Palmiwon may be available as preventive and therapeutic prescription of type 1 diabetes mellitus.

  • PDF

Development of the efficient insulin secretion model for the oral glucose tolerance test

  • Lee, Jae-Cheol;Lee, Sun-Hyeok;Im, Chae-Heon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.635-642
    • /
    • 2017
  • Cobelli와 그의 동료들이 제안한 포도당 농도에 따른 췌장의 인슐린 분비 모델(Cobelli model)은 비교적 단순한 모델이지만 Grodsky의 실험 뿐만 아니라 일련의 관련 실험을 재현하였다. 하지만 이 모델은 췌장 베타세포 내 인슐린 분포를 미분형식으로 표현하였고, 적분을 통해 인슐린 양을 계산하였다. 그로 인해 각 시간 스텝에서 포도당의 양에 따라 적분 구간만큼 반복적인 계산을 수행해야만 했다. 이에 본 연구에서는 Cobelli model을 재현하면서 좀 더 효과적으로 결과를 얻을 수 있는 새로운 Multi-RRP model을 제시하였다. Multi-RRP model은 RRP를 과립의 자극 여부에 따라 RRPhigh와 RRPlow로 나누어 각각의 인슐린 분비를 계산하는 방법으로, 포도당의 변화에 따라 RRP의 수를 증가시켜 인슐린의 분비량을 산출한다. 이 Multi-RRP model의 시뮬레이션 결과는 Cobelli model과 동일한 경향을 보이며, Grodsky의 계단 실험과의 비교에서는 Cobelli model보다 실험 결과에 더 접근한다. 또한, 시뮬레이션 시간 비교를 통해 효율성을 확인하였고, Multi-RRP model이 Cobelli model보다 16배 이상 효율이 더 높은 것으로 확인되었다.

  • PDF

Antidiabetic effects of unripe black raspberry ethanol extracts in C57BL/6N db/db mice (C57BL/6N db/db 생쥐에서 복분자 미숙과 에탄올 추출물의 항당뇨 효과)

  • Choi, Hye Ran;Lee, Su Jung;Ryu, Tae Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.391-397
    • /
    • 2022
  • This study aimed to verify the antidiabetic effects of the unripe black raspberry extract (UBRE) in obese diabetic mice. For the experiment, animal model mice were divided into six groups: normal control, diabetic control, three experimental groups (treated with 75, 150, and 300 mg/kg single dose of UBRE), and a positive control (200 mg/kg metformin). The groups treated with 300 mg/kg UBRE and metformin had significantly reduced blood glucose and triglyceride levels in the diabetic mice compared to those in the vehicle control group. In addition, histopathological evaluation showed that UBRE increased the Langerhans area, cell number, and insulin concentration in the pancreatic islets of db/db mice. Therefore, UBRE exerts significant antidiabetic effects by decreasing the blood glucose and lipid levels, suggesting that it can be consumed as a functional diet for diabetic patients.

Mechanisms of Insulinotropic Effect of YHB-2017 [Genistein] Isolated from fermentation Broths of Streptomyces sp. (방선균에서 유래한 YHB-2017 [Genistein]의 인슐린 분비 촉진 작용 기전)

  • Kwag, Won-Jae;Park, You-Hoi;Park, Jun-Chul;Lee, Byung-Kyu;Kang, Yup;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.466-473
    • /
    • 2006
  • Impaired insulin secretion from pancreatic beta-cells in response to glucose is an important feature in the pathology of non-insulin-dependent diabetes mellitus (NIDDM). In the course of screening for useful insulin secretagogues, we have isolated and identified YHB-2017 (Genistein) as a insulin secretion potentiator from fermentation broths of our in-house microbial library. The insulinotropic activity of YHB-2017 in isolated rat pancreatic islets was exerted only at high concentration of glucose (8.3-16 mM) but not at low concentration of glucose (3.3-5.5 mM). Also, in perifusion study with isolated rat pancreatic islets, YHB-2017 stimulated insulin secretion in a time-dependent manner when YHB-2017 was added to KRB buffer containing 16 mM glucose. In the presence of $200\;{\mu}M$ diazoxide and 35 mM KCI, which stimulates maximum $Ca^{2+}$ influx independently of KATP channel, YHB-2017 enhanced KATP channel-independent insulin secretion at high concentration glucose (16 mM). To elucidate the mechanisms of the glucose-dependent potentiation effect of YHB-2017, pharmacologic inhibitors for protein kinase A, protein kinase C and calcium/calmodulin kinase II were pre-treated and then the potentiation effect of YHB-2017 on insulin secretion was investigated. Pre-treatment of H89 as a PKA inhibitor had a significant inhibitory effect on YHB-2017-induced potentiation effect. Furthermore, western immunoblotting analyses revealed that YHB-2017 increased phosphorylation of PKA substrates and cAMP response element-binding protein (CREB) under high concentration of glucose. These results demonstrated that the insulinotropic effect of YHB-2017 is mediated through PKA signal pathway and activated amplifying $K_{ATP}$ channel-independent insulin secretion pathway.

Effect of Fermented Guava (Psidium guajava L.) Leaf Extract on Hyperglycemia in Low Dose Streptozotocin-induced Diabetic Mice (저용량 Streptozotocin으로 유도된 당뇨모델 생쥐에서 발효 구아바 잎 추출물의 고혈당 억제 효과)

  • Jin, Yeong-Jun;Kang, Shin-Hae;Choi, Soo-Youn;Park, Soo-Young;Park, Ji-Gweon;Moon, Sang-Wook;Park, Deok-Bae;Kim, Se-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.679-683
    • /
    • 2006
  • The effects of dried and fermented guava (Psidium guajava L.) leaf extracts on blood glucose levels were investigated in low-dose streptozotocin(STZ)-induced diabetic mice. Fermented guava leaf extract (500 mg/kg/day) significantly decreased the fasting blood glucose levels after 2-4 weeks of treatment and improved the impaired glucose tolerance in STZ-induced diabetic mice. On the other hand, dried guava leaf extract lowered the blood glucose levels and improved glucose tolerance two weeks after treatment, but exacerbated STZ-induced high blood glucose levels three and four weeks after treatment. Histological and immunohistochemical observation showed that fermented guava leaf extract treatment improved STZ-induced pancreatic beta-cell damage, but dried guava leaf extract did not affect the damage to the beta-cells. These results suggest that fermented guava (Psidium guajava L.) leaf extracts improve the hyperglycemia by protecting the pancreatic beta-cells hom damage in STZ-induced diabetic mice.

Anti-diabetic mechanism of melania snail (Semisulcospira libertina) protamex hydrolysates (다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구)

  • Pyo, Sang-Eun;Choi, Jae-Suk;Kim, Mi-Ryung
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • Melania snail (Semisulcospira libertina) was traditionally used as the healthy food in Korea. It was generally known to improve liver function and heal a diabetes. The aim of this study was to elucidate the anti-diabetic mechanism of melanian snail hydrolysates treated with protamex (MPH) by investigating the inhibitory action on protein tyrosine phosphatase 1B (PTP1B), the improving effect on the insulin resistance in C2C12 myoblast and the protective effect for pancreatic beta-cell (INS-1) under the glucose toxicity. The melania snail hydrolysates treated with protamex (MPH), which showed the highest degree of hydrolysis (43%), and inhibited effectively PTP1B activity ($IC_{50}=15.42{\pm}1.1{\mu}g/mL$), of which inhibitory effect was higher than usolic acid, positive control ($IC_{50}=16.65{\mu}g/mL$). MPH increased the glucose uptake in C2C12 myoblast treated with palmitic acid. In addition, MPH increased insulin mRNA expression level by over 160% with enhanced cell viability in INS-1 cell under the high glucose concentration (30 mM). These results suggest that MHP may improve the diabetic symptom by the inhibiting the PTP1B activity, increasing the glucose uptake in muscle cell and protecting the pancreatic beta-cell from glucose toxicity.

Hypoglycemic Effect of Chlorella sp. CMS-1 Hot Water Extract on Streptozotocin-Induced Diabetic Rats (Streptozotocin-유발 당뇨쥐에 대한 클로렐라 열수 추출물의 혈당 강하 효과)

  • Kim, Jung-Wook;Cha, Jae-Young;Heo, Jin-Sun;Jin, Hyun-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1584-1591
    • /
    • 2008
  • The effect of Chlorella hot water extract (CE) on hyperglycemia in streptozotocin- induced diabetic rats has not been studied. Therefore, hypoglycemic effect of CE in type I streptozotocin- induced diabetic rats was studied. Rats were fed a semisynthetic diet supplemented with either 3% (the STZ+CE3) and 6% (the STZ+CE6) CE or no supplement the Normal and the STZ-Control rats for 4 weeks. The concentrations of fasting and non-fasting blood glucose were higher in the STZ-Control rats than in the Normal rats, but this rise was lowered in the STZ+CE3 and the STZ+CE6 rats. Serum insulin concentrations were decreased with STZ injection, however, the decreased levels were almost restored to the Normal level with CE supplementation. The increased serum fructosamine levels associated with hyperglycemia were decreased with the CE treatment. The morphology of pancreatic islets in the Normal rat was round and maintained a typical arrangement. The STZ-Control pancreatic beta-cells were found to have significant swelling and severely morphological damaged, however, pancreatic tissue damage by STZ in the CE-supplemented diet group was ameliorated. This study shows that Chlorella hot water extract had a hypoglycemic effect on the STZ-diabetic rats via either increased insulin secretion during recovery or the prevention of STZ-induced pancreatic damage.

The Effect of Dietary Fat on Insulin Secretion and Pancreatic β-Cell Mass in 90% Pancreatectomized Diabetic Rats (식이 지방이 췌장 90%를 제거한 당뇨 흰쥐의 인슐린 분비능과 췌장 베타세포의 양에 미치는 영향)

  • Park, Sun-Min;Park, Chun-Hee;Hong, Sang-Mee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.186-193
    • /
    • 2007
  • The prevalence of diabetes has increased to 8% of population. Unlike type 2 diabetes in the western countries, Korean diabetic patients are nonobese and have low serum insulin levels. As the increased prevalence of diabetes and the peculiar characteristics may be related to dietary fat contents, we determined their effects on insulin resistance, insulin secretion and pancreatic $\beta-cell$ mass in 90% pancreatectomized (Px) diabetic rats in the present study. The rats were provided with low fat diet (LF, 10 energy% fat), moderate fat diet (MF, 25 energy% fat) and high fat diet (HF, 40 energy% fat) for 6 months. HF increased body weight and epidydimal fat pads parallel with increased food intake compared to LF and MF. Fasting serum glucose and insulin levels and homeostasis model assessment of insulin resistance were higher in HF, compared to LF and MF, indicating that HF increased insulin resistance. Rats fed LF and MF diets reduced insulin resistance, but only rats fed MF improved pancreatic $\beta-cell$ mass and insulin secretion capacity, measured by hyperglycemic clamp and in situ pancreatic perfusion. LF had low insulin secretion capacity and pancreatic $\beta-cell$ mass, indicating the increased possibility of diabetic prevalence and progression. MF increased $\beta-cell$ mass by stimulating $\beta-cell$ proliferation and neogenesis and reducing $\beta-cell$ apoptosis. In conclusion, MF is effective for the prevention of prevalence and progression of diabetes.

Prediabetic In vitro Model in Pancreatic Beta Cells Induced by Streptozotocin (췌장 베타세포에서 스트렙토조토신으로 유도한 인슐린 의존형 당뇨병 실험 모델)

  • Lee, Ihn-Soon;Rhee, In-Ja;Kim, Kyong-Tai
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.260-267
    • /
    • 1997
  • To establish prediabetes in vitro model concerning the etiology of IDDM(Insulin Dependent Diabetes Mellitus) in cellular level we have designed prediabetes in vitro models in pa ncreatic beta cells. HIT-T15, RINm5F and isolated rat islets were chosen as pancreatic beta cells, and streptozotocin (STZ) used as diabetogenic agent. Degree of beta cell destruction to establish prediabetic in vitro model was determined by cell proliferation and insulin release using thymidine uptake and radio immuno assay. When HIT-T15 and RINm5F cells were treated with STZ, the degree of cell deterioration was dependent upon the origin and passage number of beta cells, and in the case of isolated islets STZ showed the more sensitivity than above two beta cell lines. The concentration and exposure time of STZ treatment to establish prediabetes in vitro model in beta cell lines and isolated rat islets were 2 ~ 10mM, 30 min. and 1 ~ 5mM, 30 min., respectively.

  • PDF

Prediabetic In vitro Model in Pancreatic Beta Cells Induced by Interleukin-$1{\beta}$ (췌장 베타세포에서 인터루킨-$1{\beta}$로 유도한 인슐린 의존형 당뇨병 실험 모델)

  • Lee, Ihn-Soon;Lee, In-Ja;Kim, Kyong-Tai
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.408-413
    • /
    • 1998
  • To establish prediabetes in vitro/ model concerning the etiology of Insulin Dependent Diabetes Mellitus (IDDM) in cellular level we have designed experimental prediabefic model in pancreatic beta cells. RINm5F, HIT-T15 and isolated rat islets were chosen as pancreatic beta cells. Since interleukin-$1{\beta}$-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of IDDM, we used inteleukin-$1{\beta}$ as diabetogenic agent. For establishment of prediabetic in vitro model, the degree of beta cell deterioration was determined by cell proliferation, insulin release and morphological appearance. Cell proliferation, insulin release and morphology were changed dose-dependently in condition that inteleuldn-$1{\beta}$ was exposured to pancreatic beta cells. The concentration and exposure time of interleukin-$1{\beta}$ to set up prediabetic model in beta cell lines and isolated rat islets were 100${\sim}$1000U/ml, 48hr. And 25${\sim}$100U/ml, 48hr, respectively.

  • PDF