• Title/Summary/Keyword: 충진

Search Result 1,590, Processing Time 0.033 seconds

White Mica and Chemical Composition of Samdeok Mo Deposit, Republic of Korea (삼덕 Mo 광상에서 산출되는 백색운모 및 화학조성)

  • Yoo, Bong Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.223-234
    • /
    • 2019
  • The geology of the Samdeok Mo deposit consists of Paleozoic Hwajeonri formation, Kowoonri formation, Suchangri formation, Iwonri formation, Hwanggangri formation, Cretaceous, leucocratic porphyritic granite and granitic porphyry. This deposit consists of three quartz veins that filled NS oriented fractured zones in Suchangri formation. Quartz veins vary from 0.05 m to 0.3 m in thickness and extend to about 400 m in strike length. Quartz veins occur as massive, breccia, and cavity textures. Wallrock alteration has silicification, sericitization, argillitization and chloritization. The mineralogy of the quartz veins consists of quartz, fluorite, white mica, biotite, apatite, monazite, rutile, ilmenite, molybdenite, chalcopyrite, Fe-Mg-Mn oxide and Fe oxide. White mica from Samdeok Mo deposit occurs as fine or coarse grains in quartz vein and hostrock and has four mineral assemblages (I type: quartz, molybdenite, Fe oxide and Fe-Mg-Mn oxide, II type: quartz, Fe oxide and Fe-Mg-Mn oxide, III type: quartz and biotite, and IV type: quartz). The structural formular of white mica from quartz vein is $(K_{0.89-0.60}Na_{0.05-0.00}Ca_{0.01-0.00}Sr_{0.02-0.00})_{0.94-0.62}(Al_{1.54-1.12}Mg_{0.36-0.18}Fe_{0.26-0.09}Mn_{0.04-0.00}Ti_{0.02-0.00}Cr_{0.02-0.00}Zn_{0.01-0.00})_{1.91-1.72}(Si_{3.40-3.11}Al_{0.92-0.60})_{4.00}O_{10}(OH_{1.68-1.42}F_{0.58-0.32})_{2.00}$, but white mica of I type has higher FeO content, and lower $SiO_2$ and MgO contents than white micas of other types. Also, compositional variations in white mica from the Samdeok Mo deposit are caused by phengitic or Tschermark substitution ($(Al^{3+})^{VI}+(Al^{3+})^{IV}{\leftrightarrow}(Fe^{2+}{\text{ or }}Mg^{2+})^{VI}+(Si^{4+})^{IV}$) and direct $(Fe^{3+})^{VI}{\leftrightarrow}(Al^{3+})^{VI}$ substitution.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

Effect of Packaging Systems with High CO2 Treatment on the Quality Changes of Fig (Ficus carica L) during Storage (저장 중 무화과(Ficus carica L) 선도유지를 위한 고농도 이산화탄소 처리된 포장 시스템 적용 연구)

  • Kim, Jung-Soo;Chung, Dae-Sung;Lee, Youn Suk
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.799-806
    • /
    • 2012
  • This experiment was conducted to establish the optimum conditions for high $CO_2$ gas treatment in combination with a proper gas-permeable packaging film to maintain the quality of fig fruit (Ficus carica L). Among the fig fruits with different high $CO_2$ treatments, the quality change was most effectively controlled during storage in the 70%-$CO_2$-treated fig fruit. Harvested fig fruit was packaged using microperforated oriented polypropylene (MP) film to maintain the optimum gas concentrations in the headspace of packaging for the modified-atmosphere system. MP film had an oxygen transmission rate of about $10,295cm^3/m^2$/day/atm at $25^{\circ}C$. The weight loss, firmness, soluble-solid content (SSC), acidity (pH), skin color (Hunter L, a, b), and decay ratio of the fig fruits were monitored during storage at 5 and $25^{\circ}C$. The results of this study showed that the OPP film, OPP film + 70% $CO_2$, and MP film+70% $CO_2$ were highly effective in reducing the loss rate, firmness and decay occurrence rate of fig fruits that were packaged with them during storage. In the case of using treatments with packages of OPP film and OPP film+70% $CO_2$, however, adverse effects like package bursting or physiological injury of the fig may occur due to the gas pressure or long exposure to $CO_2$. Therefore, the results indicated that MP film containing 70% $CO_2$ can be used as an effective treatment to extend the freshness of fig fruits for storage at a proper low temperature.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Effects of Tile Drain on Physicochemical Properties and Crop Productivity of Soils under Newly Constructed Plastic Film House (신설 하우스 시설재배지의 파이프 암거배수 효과)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.154-162
    • /
    • 2003
  • This study was conducted to investigate the effects of tile drain on Physicochemical properties and crop productivity of soils under plastic film house for three years (1999 - 2001). Tiles (${\Phi}100mm$ PVC pipe) were established at 50-60 cm depth with 1 m, 2 m, and 3 m intervals in Gangseo silt loam soil under 2W-type plastic film house. Cropping system was a pumpkin-pumpkin in the first year, a cucumber-spinach-crown daisy-spinach-young radish in the second year, and a green red pepper-tomato-spinach in last year, with conventional fertilization and drip or furrow irrigation by groundwater pumping. Bulk density and soil hardness of plot with tile drain were lower than those of control (plot without tile drain). Soil water content was also lower in tile drain plot than in control regardless of soil depth, and decreased at narrower interval and longer distance from tile in the same plot, thus suggesting that water flow and density of tile drain plot was higher than those of control. Rhizosphere of spinach, a final crop of third year, was expanded more than 2 cm due probably to improvement of soil physical properties caused by tiles establishment. Electrical conductivity (EC) of topsoil decreased from $1.22dS\;m^{-1}$ to $0.82dS\;m^{-1}$ by tile drain system, and the extent of EC decrease was different with season: higher in spring and lower in summer and autumn. The $NO_{3^-}-N$ concentration in topsoil decreased, from $200mg\;kg^{-1}$ to $39mg\;kg^{-1}$. The effect of tile drain on crop yield varied with crops. Average crop productivity obtained in tile drain plot than that of control crop: 18.2% in 2 m interval, 14.2% in 3 m interval, but lower 0.2% in 1 m interval.

Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment (석탄회를 이용한 석탄광산 폐기물의 안정화 효율성 평가: 컬럼 시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Ko, Ju-In;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1071-1079
    • /
    • 2011
  • In this study, coal combustion ash (CCA) was evaluated for its stabilization effect on acidic mine waste with column experiment. Total of six treatments were installed depending on mixing ratio between coal wastes and CCA (0, 20, 40%) and mixing method (completely mixing and layered). Artificial acidic rain (pH 5.6) was used for feeding solution with flow rate of $0.05mL\;min^{-1}$. Result showed that higher pH of leachate was observed as more CCA was mixed. The highest pH in leachate was measured when 40% of CCA was mixed with coal waste (pH of 5.8). Also, complete mixing with CCA and coal waste was more effective to increase the pH of leachate than layered treatment. Regarding the reduction of soluble Fe amount, the highest efficiency (78%) was observed when 20% of coal ash was completely mixed with mine waste. Based on those result, optimum mixing ratio of coal ash with mine waste can be ranged 20-40% depending on environmental circumstances in the field.

Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2 (Bacillus subtilis S37-2 균주의 항진균활성 및 식물생육촉진 효과)

  • Kwon, Jang-Sik;Weon, Hang-Yeon;Suh, Jang-Sun;Kim, Wan-Gyu;Jang, Kab-Yeul;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.447-453
    • /
    • 2007
  • With a broad objective for the development of microbial based fertilizers, a total of 373 strains were isolated from rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass. The efficacy of the isolates to augument overall plant growth was evaluated. After screening for their plant growth promotion and antagonistic properties in vitro efficient strains were further selected. The most efficient strains was characterized by 16S rRNA gene sequences and biochemical techniques and was designated as Bacillus subtilis S37-2. The strains facilitated plant growth and inhibited the plant phathogenic fungi such as Fusarium oxysporum (KACC 40037, Rhizoctonia solani (KACC 40140), and Sclerotinia sclerotiorum (KACC 40457). Pot based bioassay using lettuce as test plant was conducted by inoculating suspension ($10^5$ to $10^8cells\;mL^{-1}$) of B. subtilis S37-2 to the rhizosphere of lettuce cultivated in soil pots. Compared with non-inoculated pots, marked increase in leaf (42.3%) and root mass (48.7%) was observed in the inoculation group where the 50ml of cell mixture ($8.7{\times}10^8cells\;ml^{-1}$) was applied to the rhizosphere of letuce either once or twice. Antagonistic effects of B. subtilis S37-2 strain on S. sclerotiorum (KACC 40457) were tested. All the tested lettuce plants perished after 9 days in treatment containing only S. sclerotiorum, but only 17% of lettuce was perished in the inoculation plot. B. subtilis grew well in the TSB culture medium. The isolates grew better in yeast extracts than peptone and tryptone as nitrogen source. The growth rate was 2~4 times greater at $37^{\circ}C$ as compared with $30^{\circ}C$ incubation temperature. B. subitlis S37-2 produced $0.1{\mu}g\;ml^{-1}$ of IAA (indole 3-acetic acid) in the TSB medium containing L-tryptophan($20mg\;L^{-1}$) in 24 hours.

Current Statues of Phenomics and its Application for Crop Improvement: Imaging Systems for High-throughput Screening (작물육종 효율 극대화를 위한 피노믹스(phenomics) 연구동향: 화상기술을 이용한 식물 표현형 분석을 중심으로)

  • Lee, Seong-Kon;Kwon, Tack-Ryoun;Suh, Eun-Jung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.233-240
    • /
    • 2011
  • Food security has been a main global issue due to climate changes and growing world population expected to 9 billion by 2050. While biodiversity is becoming more highlight, breeders are confronting shortage of various genetic materials needed for new variety to tackle food shortage challenge. Though biotechnology is still under debate on potential risk to human and environment, it is considered as one of alternative tools to address food supply issue for its potential to create a number of variations in genetic resource. The new technology, phenomics, is developing to improve efficiency of crop improvement. Phenomics is concerned with the measurement of phenomes which are the physical, morphological, physiological and/or biochemical traits of organisms as they change in response to genetic mutation and environmental influences. It can be served to provide better understanding of phenotypes at whole plant. For last decades, high-throughput screening (HTS) systems have been developed to measure phenomes, rapidly and quantitatively. Imaging technology such as thermal and chlorophyll fluorescence imaging systems is an area of HTS which has been used in agriculture. In this article, we review the current statues of high-throughput screening system in phenomics and its application for crop improvement.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Hydrothermal Evolution for the Inseong Au-Ag Deposit in the Hwanggangri Metallogenic Region, Korea (황강리 광화대 인성 금-은 광상의 광화 유체 진화)

  • Cho, Hye Jeong;Seo, Jung Hun;Lee, Tong Ha;Yoo, Bong Chul;Lee, Hyeonwoo;Lee, Kangeun;Lim, Subin;Hwang, Jangwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.307-323
    • /
    • 2018
  • The Inseong Au-Ag and base metal deposit, located in Chungchengbuk-do, Korea, consists of series of quartz veins filling fissures. The deposit occurs in Hwanggangri meta-sediment formation, a lime pebble-bearing phyllite, in the Okcheon Supergroup. Abundant ore minerals in the deposit are pyrite, arsenopyrite, sphalerite, chalcopyrite and galena. The gangue minerals are quartz, calcite and chlorite. Hydrothermal alteration such as chlorization, silicitication, sericitization and carbonitization can be observed around the quartz veins. 4 vein stages can be distinguished based on its paragenetic sequence, vein structure, alteration features and ore minerals. Microthermometry of the fluid inclusion assemblages occur in the veins are conducted to reconstruct a hydrothermal P-T evolution. Fluid inclusions in clean and barren quartz vein in stage 1 have Th of $270{\sim}342^{\circ}C$ and salinity of 1.7~6.4 (NaCl eqiv.) wt%. Euhedral quartz crystal in stage 2 have Th of $108{\sim}350^{\circ}C$ and salinity of 0.5~7.5 wt%. Barren milky quartz vein in stage 3 have Th of $174{\sim}380^{\circ}C$ and salinity of 0.8~7.5 wt%. Calcite vein in stage 4 have Th of $103{\sim}265^{\circ}C$ and salinity of 0.7~6.4 wt%. Calculated paleodepth about 0.5~1.5 km (hydrostatic pressure) indicate epithermal ore-forming condition. Shallow depth but relatively high-T hydrothermal fluids possibly create a steep geothermal gradient, sufficient for base metal precipitation in the Inseong deposit.