• Title/Summary/Keyword: 충진

Search Result 1,590, Processing Time 0.035 seconds

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Adsorption Pattern of the Herbicide, Bentazon and Its Metabolites on Soil (제초제 Bentazon과 그 대사산물들의 토양 중 흡착양상)

  • Kim, Jong-Soo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.274-280
    • /
    • 2009
  • In order to elucidate the adsorption mechanism of the herbicide, bentazon and its metabolites on soil, their adsorption patterns on soil and six adsorbents were investigated with Freundlich, Langmuir and linear isotherm. Freundlich constants ($K_f$) and maximum adsorption amount($Q^0$) of bentazon on soil was 0.55 and 3.97. Kd and Koc values of it were 0.18 and 18. The all of metabolites used except deisopropylbentazon amounts sorbed on the soil were much higher than bentazon. The most of 8-hydroxybentazon was adsorbed on soil showing $K_f$ = 316.6, $Q^0$ = 3,488, Kd = 29.7 and Koc = 2,970. Bentazon, deisopropylbentazon and 8-hydroxybentazon were shown high affinity to anion exchange regardless of pH and $NH_2$ in low pH range. Reversed phase $C_{18}$ resulted in 100% retention of N-methylbentazon regardless of pH and other metabolites were retained below 40%. The AIBA was strongly adsorbed in silica gel, COOH and cation exchange phase but poor retention was on anion exchange sorbent. 2-Aminobenzoic acid showed an amphipathic nature which had high affinity for COOH and cation exchange phase at pH 7.0 as well as $NH_2$ and anion exchange sorbent at pH 3.0.

Fractional Recovery as Extractable Form of Nutrient in Composted Livestock Manure Application on Soil Distributed in jeju (제주 토양에서 시용한 가축분 중 양분의 유효화율)

  • Hwang, Ki-Sung;Lee, In-Bog;Park, Jin-Myean;Yoo, Bong-Sick
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • This study was conducted to determine effects of composted livestock manure application on soil nutrient change. PVC pot $(30\times100cm)$ was filled with either volcanic ash soil (Gujwa series) or non-volcanic ash soil (Aewol series) and the 20 cm surface soils were applied with composted livestock manures of cattle pig and poultry at the rates of 0, 50, 100 and 150 ton/ha, respectively. After 210 days soils samples of phosphate, potassium, calcium, and magnesium affected by application of the compost. The applied composted were equivalent to the application of organic matter of $23\sim111$ ton/ha and nitrogen of $80\sim450$ ton/ha. Availability rate of phosphate after the application of composted livestock manures ranged from 1.6 to 91.7% according to the different composted. It was much higher in the non-volcanic ash soil than in the volcanic ash soil. Availability rate of potassium fractional recovery rate change ranged from 22 to 94% according to the different manures. It was larger in the composted Availability rate of calcium 38 to 93% and $9\sim90%$ in volcanic ash soil and non-volcanic ash soil, respectively, It was higher in the composted manures followed by cattle and composted pig manures. Availability rate magnesium ranged from 12 to 41% and $1\sim9%$ in volcanic ash soil and non-volcanic ash soil, respectively. The rate was higher in the composted poultry manure followed by pig and composted cattle manures.

Retrospective Study of Mortality Rates and Prognostic Indicators of Equine Colic in Korea (한국에서 산통마의 치명률과 예후인자의 회귀적 분석)

  • Lee, Eun-Bee;Kim, Joon-Gyu;Kim, Jin-Kap;Jang, Jong-Duck;Yun, Young-Min;Lee, Kyoung-Kap
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.36-40
    • /
    • 2015
  • Equine colic is a major concern in equine industry due to high morbidity and mortality rates. The purpose of this study was to establish mortality rates during medically and surgically treated colic and to identify potential prognostic indicators for mortality of equine colic in Korea. The overall mortality rate was 18/119 (15%). The 93 cases (78%) were treated medically and 26 cases (22%) surgically out of the 119 records reviewed. The mortality rate in small intestinal lesion was 7/9 (78%) and strangulating lesion was 10/11 (91%). The significance between individual factors and prognosis of equine colic was not valid but high frequency rate was found in ${\leq}3$ years age (59%) and male (50%). In dead group showed higher, rectal temperature and heart rate than those of survived group. The mortality rate was significantly high in the pale mucous membrane color and severe pain and decreased intestinal motility. In laboratory factors, dead group showed lower level of platelet than survived group, and had higher values of RBC, hemoglobin, PCV with significance (P < 0.05). Group with increased enzyme activity of CK, LDH, glucose showed poor prognosis.

The Effect of the Attached Growth in Aerobic Reactor on Nitrogen Removal in A2/O processes (포기조에 충진된 고정상 담체가 A2/O공정에서 질소제거에 미치는 영향)

  • Whang, Gye-Dae;Bae, Sung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1022-1030
    • /
    • 2006
  • Activated sludge reactors maintaining an MLSS of 3,000 mg/L and packed Bio Contact Media (BCM fixed beds) was studied in lab-scale to determine the optimal packing ratio and an HRT of aerobic reactor in terms of organic removal, nitrification, denitrification efficiencies. At all HRTs of 3 hr, 5 hr, 7 hr respectively, reactors without BCM, control reactors, had the lowest TCODcr removal efficiency about 74.6%, and reactors with the BCM packing ratios of 10%, 15%, 20% had a greater TCODcr removal efficiency above 81.4%. As HRT decreased, the TCODcr removal efficiency decreased also in all reactors. However, a better utilization of TCODcr even at a higher organic loading was observed in reactors with BCM. The nitrification efficiency at all reactors was greater than 94%, and reactor with 20% packing of BCM had the highest nitrification efficiency at 97.9% while the TKN loading increased at $0.085mgTKN/m^3{\ast}day$ as HRT decreased, In terms of denitrification efficiency, the reactor without BCM ranged from 11.6% to 13.7%, and the reactors with BCM ranged from 28.3% to 63.4% which suggests that the more BCM is packed in the reactors, the higher the denitrification efficiency is achieved. Two parallel $A^2/O$ systems maintaining an MLSS of 3,000 mg/L were operated to investigate the effect of BCM packing ratio of 20% on organic removal, nitrification, denitrification efficiencies. Packing with BCM in system of aerobic reactor affected the SCODcr removal efficiency that increased from 73% to 78%. The nitrification efficiency for both systems with or without BCM was greater than 95%. The denitrification efficiency of systems with BCM and without BCM was 85.8% and 81.8%, respectively which appears that the denitrification efficiency was increased slightly by packing BCM. Compared denitrification efficiency in $A^2/O$ system to previous experimental study with activated sludge reactors operates with the same HRT $A^2/O$ system showed only 29% greater denitrification efficiency. It suggests that $A^2/O$ system with BCM can achieve a similar level of denitrification efficiency when the HRT of anoxic reactor is decreased to some extent.

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • Kang, Seong Chul;Lee, Byoung Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.713-721
    • /
    • 2012
  • In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required. Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of $400^{\circ}C$ which turned out to be the optimum temperature. Activated Ca-loess complex below $400^{\circ}C$ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above $400^{\circ}C$ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above $400^{\circ}C$20. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess. Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

The Effects of Korean Traditional Sauces on Quality Characteristics of Hanwoo Semitendinosus Dry-cured Ham (한국 전통장류가 한우 반힘줄모양근(M. Semitendinosus)으로 제조한 건염햄의 육질 특성에 미치는 영향)

  • Seong, Pil-Nam;Cho, Soo-Hyun;Kang, Geun-Ho;Kim, Dong-Hoon;Park, Beom-Young;Kang, Sun-Moon;Park, Kyoung-Mi
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.757-762
    • /
    • 2013
  • This study was conducted to develop a processing method for dry-curing beef ham with Korean traditional sauces and to investigate the quality properties of the dry-cured beef hams. Semitendinosus muscle from Hanwoo was spread with sundried salt (C), sun-dried salt mixed with red pepper paste (T1), and sun-dried salt mixed with soybean paste (T2), and inserted into washed Hanwoo large intestine. It was then dried and fermented for 75 d. Moisture contents of the hams were 46-48%, without any significant differences. T1 showed the lowest pH among the three dry-cured hams, while water holding capacity (WHC) of T2 was found the lowest (p<0.05). In mechanical color determination, C showed higher CIE $a^*$ and CIE $b^*$ than T1 and T2 (p<0.05), however CIE $L^*$ did not show any significant difference. In texture, T1 demonstrated significantly lower springiness than C (p<0.05). The sensory properties of all dry-cured hams did not show any significant difference, but T1 indicated a higher taste, saltiness and overall acceptability than others, whereas C gathered the highest score in color and flavor. In conclusion, the dry-curing by combination of sun-dried salt mixed with red pepper sauce (T1) showed higher quality properties of the Hanwoo dry-cured ham.

Growth Suppression of Tomato Plug Seedlings as Affected by Material Type for Brushing Stimulation (브러싱 소재에 따른 토마토 공정묘의 생장억제)

  • Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Hee Sung;Kim, Eun Bin;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.313-319
    • /
    • 2020
  • This study was conducted to find proper material of brushing stimulation for height suppression of tomato plug seedlings. The tomato seeds were sown in 40-cell plug tray filled with commercial seedling medium and brushing stimulation was started at 18 days after sowing. Acrylic, polypropylene film, and weaving film were used by materials of brushing stimulation and, non-treatment and diniconazole treatment were used as the control. In acrylic treatment, the plant height was the shortest and the stem diameter was the thickest. Leaf growth was the lowest in diniconazole treatment. However, the SPAD value was the greatest in diniconazole treatment. The dwarf rate was the greatest in acrylic treatment. In acrylic treatment, the T/R ratio was the lowest and compactness was the greatest. In conclusion, use of the acrylic as material for brushing stimulation has higher dwarf rate than diniconazole treatment, and has advantages height suppression and seedling quality.