• Title/Summary/Keyword: 충진

Search Result 1,587, Processing Time 0.033 seconds

Effects of Operating Conditions on Adsorption and Desorption of Benzene in TSA Process Using Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X 충진탑을 사용한 TSA 공정에서 조업조건이 벤젠의 흡착 및 탈착에 미치는 영향)

  • Jung, Min-Young;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.594-603
    • /
    • 2018
  • The effects of operating conditions such as benzene concentration, nitrogen flow rate, steam flow rate, and bed temperature on TSA process were experimentally investigated as a potential VOC removal technology using two kinds of beds packed with activated carbon and zeolite 13X. The TSA cycle studied was composed of the adsorption step, steam desorption step, and drying and cooling step. At 2% benzene concentration, the total adsorption amounts of zeolite 13X and activated carbon were 4.44 g and 3.65 g, respectively. Since the zeolite 13X has a larger packing density than that of the activated carbon, the larger benzene amount could be adsorbed in a single cycle. Increasing the water vapor flow rate to 75 g/hr at 2% benzene concentration reduced the desorption time from 1 hr to a maximum of 33 min. If the desorption time is shortened, the drying and cooling step period can be relatively increased. Accordingly, the steam removal and bed cooling could be sufficiently performed. The desorption amounts increased with the increase of the bed temperature. However, the energy consumption increased while the desorption amount was almost constant above $150^{\circ}C$. In the continuous cycle process, when the amount of remained benzene at the completion of the regeneration step increased, it might cause a decrease in the working capacity of the adsorbent. The continuous cycle process experiment for zeolite 13X showed that the amount of remained benzene at the end of regeneration step maintained a constant value after the fourth cycle.

The Removal of Algae and Phosphorus in Eutrophic Waters Using Various Filter Media (몇 가지 여재를 이용한 부영양수 내의 조류 및 인 제거효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.102-109
    • /
    • 2012
  • In this study, the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) were tested for the removal of algae and phosphorus in the two eutrophic water samples (natural water and artificial algal culture with BG-11 medium). These filter media were used in the column device as single or combined applications. The effect of the $Mg(OH)_2$ on phosphorus removal was examined using different particle sizes (<2 mm and >2 mm) and concentrations (0, 10, 50 and 100 g $L^{-1}$) of magnesium hydroxide. The removal efficiency of phosphate by magnesium hydroxide was increased with longer experimental time and higher concentration. However, there was no significant difference in the degree of phosphorus removal between any two particle sizes (1 mg P $L^{-1}$: F=0.109, P=0.685; 10 mg P $L^{-1}$: F=1.542, P=0.355). Among the four media, activated carbon showed the most potent effect on the removal of both algae and phosphorus. The highest removal efficiency of algae and phosphorus was obtained by combining four columns of each filter medium. Interestingly, integration of four filter columns showed higher removal efficiency than activated carbon alone. The highest removal efficiency by integrated filter columns seemed to be caused by a synergistic effect of combined activated carbon and magnesium hydroxide.

A Study on the filtering bed of porous sintering-product and hydrophytes for sewage treatment (오·폐수처리를 위한 수생식물 다공성 소결체여상의 기초연구)

  • Kim, Ju-Hyung;Yun, Chan;Oh, Joon-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.89-97
    • /
    • 2001
  • The purpose of this study was to find the optimum condition of the high removal efficiency of water pollutant as sewage treatment technology using a filtering bed charged with porous sintering-pellet which was planted with hydrophytes. Experiment was carried out by changing concentration of water pollutants(COD, T-N, T-P), kind of hydrophyte, kinds of filtering material and size, and HRT. The result of removal efficiency was obtained as following: COD removal 73.8~87.1% for input concentration range of 50~450mg/L, T-N removal 61.3~77.3% for input concentration range of 7~124mg/L, T-P removal 89.5~99.1% for input concentration ranger of 3~27mg/L. In a comparative experiment of three kinds of hydrophyte(Iris pseudoacorus, Phragmites communis $T_{RIN}$., Oenanthe javanica Dc.), the best removal efficiency of COD and T-N was gained with Iris pse-udoacorus, and Phragmites communis $T_{RIN}$ showed better result than two hydrophytes for the removal efficiency of T-P. In a comparative experiment of four kinds of filtering-materials, the removal efficiencies were in the order of porous sintering-pellet, gravel, nonused-tire and nonused-concrete. It was found that for the porous sintering-pellet, the smaller its diameter, the better its result. In the filtering bed in which was charged with porous sintering-pellets of 5mm diameter and planted with Iris pseudoacorus, the removal efficiency of COD, T-N and T-P were over 80%, 70% and 90% under the concentration of COD 250mg/L, T-N 70mg/L and T-P 15mg/L for 24hrs treatment. Thus, we concluded that a filtering bed charged with porous sintering-pellet and planted with hydrophytes will be suitable for treatment of sewage water as a pro-natural treatment technology.

  • PDF

Electronic and Magnetic Propwrties of a Novel Rare-earth Permanent Magnet : $Sm_{2}Fe_{17}N_{3}$ (신소재 희토류 영구자석, $Sm_{2}Fe_{17}N_{3}$ 화합물의 전자구조 연구)

  • 민병일;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.94-100
    • /
    • 1993
  • Electronic and magnetic properties of the novel rare-earth permanent magnet, $Sm_{2}Fe_{17}N_{3}$, are investigated by performing self-consistent local density functional electronic structure calculations. Employing the LMTO(Linearized Muffin-Tin Orbital) band method, we have obtained the electronic band structures for both paramag-netic and ferromagnetic phases of $Sm_{2}Fe_{17}N_{3}$. Based on the energy band structures, we have studied bonding ef-fects among Sm, Fe, and N atom as well as electronic and magnetic structures. It is found that the N atom sub-stantially reduces the magnetic moment of neighboring Fe atoms through the hybridization interaction and also plays a role in stabilizing the structure. the average magnetic moment of Fe atoms in the ferromagnetic phase of $Sm_{2}Fe_{17}N_{3}$ is estimated to be $2.33{\mu}_B$, which is ~8% larger than the magnetic moment of $Sm_{2}Fe_{17}$, $2.16{\mu}_B$. The Fe I (c) atom, which is located farthest from the N atom and surrounded by 12 Fe nearest neighbors, has the largest magnetic moment ($2.65{\mu}_B$), while the Fe III (f), whose hybridization interaction with N atom is very strong, has the smallest magnetic moment($1.96{\mu}_B$).

  • PDF

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF

Mineralogy and Geochmistry of the Sanjeon Au-Ag Deposit, Wonju Area, Korea (산전 금-은 광상에 관한 광물 및 지화학적 연구)

  • Se-Hyun Kim
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.445-454
    • /
    • 1999
  • The Sanjeon Au-Ag deposit consists of three subparallel hydrothermal quartz-calcite veins which filled fault-related fractures (generally $N20^{\circ}$ to 35"W-trending and $70^{\circ}$ to $80^{\circ}$ SW-dipping) within quartz porphyry. The vein mineralization shows an apparent variation of mineral assemblages with paragenetic time: (1) early, white quartz + pyrite + arsenopyrite + brown sphalerite, (2) middle, white (vein) to clear quartz (vug) + base-metal sulfides + electrum + argentite, (3) late, calcite + pyrite + native silver. Mineralogic and fluid inclusion data indicate that gold-silver minerals were deposited at temperatures from 2l $0^{\circ}$ to $250^{\circ}$ with salinities of 4 to 5 wt. % equiv. NaCl and log fS2 values from -14.0 to -12.2 atm. The linear relationship between homogenization temperature and salinity data indicates that gold-silver deposition was a result of meteoric water mixing. Ore mineralization occurred at pressure conditions of about 70 bars, which corresponds to the mineralization depths of about 260 m to 700 m. There is a remarkable decrease of the calculated 1)180 values of water from 1.3 to -9.7%0 in hydrothermal fluid with increasing paragenetic time. This indicates a progressive increase of meteoric water influx in the hydrothermal system at the Sanjeon deposit. Oxygen-hydrogen, sulfur, and carbon isotope values of hydrothermal fluids indicate that the ore mineralization was formed largely from meteoric waters with the contribution of sulfur and carbon from a deep igneous source.

  • PDF

The Primary Structure Controlled Mineralization in Weolseong Diatreme, Southern Korea (월성(月城) 다이아튜림의 층준(層準)에 따른 광화(鑛化) 현상(現狀))

  • Park, Ki-Hwa;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1987
  • The Nokdong As-Zn deposit, located 28 km south of Kyeongju City, Southern Korea, has been investigated by a deep drilling programme. The mineralized zone is roughly 290m long and 180m wide at surface and is hosted in a pipe diatreme infilled with poor to well bedded felsic volcaniclastics. The diatreme was formed by explosive volcanic activity, of probably early Tertiary age, subsequent hydrothermal alteration and mineralization took place concurrently within stratigraphic layers in diatreme. Coarse volcaniclastics in the center part of the diatreme, together with complex systems of fracturing, acted as pathways for late hydrothermal fluids which caused alteration of volcanic material to sericite, chlorite and carbonate and precipitated ore minerals, quartz and calcite in the voids. Porosity and permeability were key factors in determining which portions of the layered diatreme were mineralized. The lower part of certain layers retained a relatively high porosity and were extensively mineralized. Metallic mineralization, consisting mostly of pyirte, sphalerite and arsenopyrite, is found as disseminations, tuff-breccia filling and veins.

  • PDF

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.