• Title/Summary/Keyword: 충방전

Search Result 819, Processing Time 0.03 seconds

Effect of MgF2 Surface Modification for LiNi0.8Co0.15Al0.05O2 Cathode Material on Improving Electrochemical Characteristics (LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과)

  • Jin, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.52-58
    • /
    • 2020
  • Electrochemical characterization and thermal stability were investigated for MgF2 coated LiNi0.8Co0.15Al0.05O2 cathode. The ratio of MgF2 was controlled by 0.5, 1, 3 wt%. Cyclic voltammetry, charge-discharge profiles, rate capability, cycle life were measured for electrochemical properties. DSC analysis was measured for thermal stability. The first discharge capacities of MgF2 coated LiNi0.8Co0.15Al0.05O2 were decreased at 0.1C-rate compared to pristine LiNi0.8Co0.15Al0.05O2. But the rate capability and cycle life of MgF2 coated LiNi0.8Co0.15Al0.05O2 were improved at 2C-rate. In DSC analysis result, the exothermic temperature of MgF2 coated LiNi0.8Co0.15Al0.05O2 was increased and peak height was decreased.

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes (스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교)

  • Lee, Ki-Soo;Bang, Hyun-Joo;Sun, Yang-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2007
  • In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells (액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구)

  • Yoon, Byeolhee;Han, Taeyeong;Kim, Seokwoo;Jin, Dahee;Lee, Yong min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

Anodic Properties of Needle Cokes-derived Graphitic Materials in Lithium Secondary Batteries (침상 코크스(needle cokes)로부터 제조된 흑연질 탄소재료의 리튬 2차전지 음극특성)

  • Park Chul Wan;Oh Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 1999
  • Two needle cokes (NC-A and NC-B) that differ in both the texture and impurity content to each other were graphitized at $2000-3000{\circ}C$, and the average particle size, size distribution and surface area were compared after milling. Their anodic properties in Li secondary batteries were also analyzed. Two materials showed a higher degree of graphitization with an increase in the preparation temperature, however, the NC-B series was less graphitized than NC-A due to the presence of impurities and less ordered mosaic texture. The mein particle size of the milled powder was proportional to the degree of graphitization, but the surface area showed the opposite trend. The highly graphitized materials yielded powders of lower uniformity in the size distribution. The discharge capacity of the resulting carbons steadily decreased in the temperature range of 1000 to $2000^{\circ}C$ due to the depletion of carbonaceous interlayers that contain crystal defects. A later increase in the discharge capacity was observed at $>2000^{\circ}C$, which arises from the formation of graphitic interlayers. The milling process gave rise to a sloping discharge curve at >1.0 V, but this was converted to a plateau at <0.25V after a repeated cycling or additional heat-treatment at $1000^{\circ}C$. The discharge at >1.0V likely comes from the disordered surface structure formed during the milling process. The evolution of a plateau at <0.25 V suggests that this disordered structure transforms to a more ordered graphitic one upon a cell cycling or heat-treatment.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

Components in Zn Air Secondary Batteries (Zinc Air 이차전지의 구성요소)

  • Lee, Junghye;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Components of zinc-air battery and their problems are explained. Energy density of zinc air battery is superior to other commercial ones including Li-ion batteries. Cycle life of the zinc air batteries is poor because of irreversible redox reactions on both electrodes. In order to improve the performance of the zinc air battery, catalysts, passivation, and the new structure of electrodes should be developed to optimize several reactions in an electrode. Multidisciplinary efforts, such as mechanics, corrosion science, composite materials are necessary from the beginning of the research to obtain a meaningful product.

A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju (배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구)

  • Ku, Bon-Hui;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

Autonomous Control for AC Microgrid Connected with Distributed Generation and Energy Storage System (분산전원 및 ESS가 연계된 AC 마이크로그리드의 자율적 제어기법)

  • Jang, Myeong-Jun;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.451-452
    • /
    • 2016
  • 최근 풍력 및 태양광 발전과 같은 분산전원 시스템의 설비가 증가함에 따라 전력 생산자가 늘어나고 있으며 발전량이 불규칙적인 신재생에너지 자원을 전력 수요에 따라 효율적으로 운용하고 관리하기 위한 에너지 저장장치(Energy storage system : ESS)의 필요성이 증가하고 있다. 최근에는 기존의 중앙집중 방식의 전력 시스템이 가지는 여러 문제를 해결하기 위해 여러 분산 발전 요소들과 에너지 저장장치, 부하 및 계통을 상호 연결한 마이크로그리드의 개념이 제안되고 있다. 마이크로그리드 내에서 분산전원과 계통에 ESS가 연계 되면 전력수급 상황에 따라 잉여전력이 발생할 때 전력을 저장할 수 있으며 전력수요가 클 때 저장된 전력을 부하에 공급하여 전력설비를 보다 안정적이고 효율적으로 운용할 수 있다. 본 논문에서는 풍력발전 시스템, 양방향 충/방전이 가능한 ESS, 부하 및 계통이 연계된 마이크로그리드를 대상으로 이를 효율적으로 운용하고 계통전력 사용을 최소화 할 수 있는 독립형 마이크로그리드의 자율적 제어기법에 대한 연구를 수행한다. 전력수급 상황에 따라 각 요소들의 운전 모드를 결정하는 기법이 제시되고 각 동작 모드에서의 분석 및 시뮬레이션에 의한 검증을 통하여 본 제어기법의 효용성을 입증한다.

  • PDF

Graphene-like β-Ni(OH)2 나노판 구조의 합성 및 특성

  • Cha, Seong-Min;Nagaraju, Goli;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.201.2-201.2
    • /
    • 2015
  • 현대 디지털 사회에서 고효율 에너지와 파워소스에 관한 요구가 커짐에 따라 차세대 에너지 저장 소자에 대한 연구가 계속되고 있다. 그 중 리튬이온 배터리, 슈퍼커패시터, 그리고 연료 전지들이 우리의 일상생활에서 점점 더 중요하게 자리잡아가고 있는데 이런 다양한 에너지 저장소자 중 슈퍼커패시터가 많은 관심을 받고 있다. 이는 긴 수명, 빠른 충-방전 속도, 높은 에너지 밀도, 그리고 안전함 때문이다. 슈퍼커패시터는 에너지 저장 메커니즘에 따라 두 가지로 분류될 수 있는데 전기이중층 커패시터(EDLC)와 슈도커패시터(pseudocapacitor)로 나누어질 수 있다. 슈도커패시터는 active 물질과 전해질 이온 간의 전기화학적 반응으로 인해 EDLC보다 더 많은 에너지를 저장할 수 있다. 그러므로 지금까지 새로운 형태의 슈도용량성 물질을 만들기 위한 노력이 집중되고 있다. 본 연구에서는 전기화학적증착 방법을 통해 graphene-like ${\beta}$-nickel hydroxide (${\beta}-Ni(OH)_2$) 나노판 구조를 전도성 직물에 합성하였다. ${\beta}-Ni(OH)_2$ 슈도커패시터의 유연하고 효율적인 비용의 전극으로서 높은 비정전용량, 우수한 전기화학 가역성, 그리고 뛰어난 사이클 안정성을 보였다. 이런 쉬운 방법으로 유연한 전도성 직물에 합성된 metal hydroxide/oxide 나노구조는 웨어러블 에너지 저장소자와 변환소자 분야에 사용될 것으로 기대된다.

  • PDF