• Title/Summary/Keyword: 충동형 초음속터빈

Search Result 41, Processing Time 0.018 seconds

Experimental Investigation of the Effect of Partial Admission Ratio on the Performance of Supersonic Impulse Turbine (초음속 충동형 축류터빈의 부분분사비 효과에 대한 실험적 연구)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, experimental investigation results of the effect of partial admission ratio on the performance of axial turbine was presented. A supersonic impulse turbine of gas generator cycle liquid rocket engine turbopump was used for the test. for experimental purpose, a nozzle block, in which total 14 number of axi-symmetric convergent-divergent nozzles are arranged circumferentially, was designed and manufactured. Partial admission ratio was controlled by changing the number of active nozzles. High pressure air was used as working medium for the test. The experimental result revealed that the performance of the supersonic impulse turbine does not much affected by the partial admission ratio for supersonic impulse turbine.

Effects on the Performance of Velocity Compound Supersonic Impulse Turbine with the Rotor Overlaps (속도 복합형 초음속 충동형 터빈의 로터 블레이드 오버랩이 성능특성에 미치는 영향)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.43-48
    • /
    • 2010
  • Present study was conducted numerical analysis for velocity compound supersonic impulse turbine with the rotor overlaps, and the performance characteristics were analyzed through the numerical results. Tip overlap was more effective than hub overlap through the analysis. a case, overlap applied the hub and tip of the rotor, has the largest improvement for the turbine performance in parametric study cases. In case of overlap for the 2nd stage rotor, however, improvement of the turbine performance was not visibly large. Because, power generated in the 2nd stage was 22~23% of whole generated turbine power.

  • PDF

Numerical Study of the Supersonic Turbine Rotor Tip Variation Effect on the Turbine Performance (로터 팁 간극이 초음속 터빈 성능에 미치는 영향에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.382-386
    • /
    • 2006
  • Three dimensional numerical analysis of the supersonic turbines with different rotor tip clearances was conducted to analyze the effect of the tip gap clearance variations on the turbine performance. The result showed that the turbine performance deteriorates and the tip leakage increases by the effect of the rotor tip clearance and the tip leakage affects turbine performance degradation dominantly.

  • PDF

Performance Characteristics of Velocity Compound Supersonic Impulse Turbine with the Rotor Overlaps (속도 복합형 초음속 충동형 터빈의 동익 오버랩에 따른 성능특성)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • As a preview study, present research analysed the performance characteristics of a velocity compound supersonic impulse turbine with the rotor overlaps before adapting the overlap has the best turbine performance. This research was conducted for the turbine with square cross-section nozzles instead of axisymmetric nozzles and wrap around nozzles. Through 3-dimensional flow analysis for the turbine by a commercial flow analysis package, tip overlap case was more effective to improve the turbine performance than case hub overlap, and overlap case applied the hub and tip of the rotor had the largest improvement for the turbine performance in the cases. In case of overlap for the 2nd stage rotor, improvement of the turbine performance was not visibly large. Because, generated power in the 2nd stage is 22~23% of whole generated turbine power.

Study on the Turbine Performance of 7 ton Liquid Rocket Engine Turbopump (7톤급 액체로켓 엔진 터보펌프 터빈 성능 연구)

  • Lee, Hanggi;Shin, Juhyun;Choi, Changho
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was performed to evaluate the turbine performance of a turbopump in the third stage engine of the Korea Space Launch Vehicle-II. The turbine is a supersonic impulse type with a single rotor. One nozzle is for starting and four remaining nozzles are for steady operation. A similarity test was carried out in the high air test facilities at the Korea Aerospace Research Institute. Test results showed that turbine efficiency changed much more from rotational speed variations than by pressure ratio variations. These results showed characteristics similar to other supersonic impulse turbines.

Experimental Investigation of Performance for Supersonic Impulse Turbine (초음속 충동형 터빈의 성능에 대한 시험적 고찰)

  • Lee, Hang-Gi;Jeong, Eun-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.561-565
    • /
    • 2009
  • The performance of supersonic impulse turbine was investigated experimentally. Experiment was performed with the compressed air instead of the high temperature burned gas because of the limitation of test facility and danger. As a result of the experiment with the compressed air, the performance in the real gas(burned gas) was predicted by the similarity method. The nozzle area of prototype turbine was calculated based on the real gas. So, it is difficult to satisfy the similarity conditions completely. Two similarity conditions were set and the design point for real gas was existed between two similarity conditions. And, the new turbine test model with calculated nozzle area based on the compressed air was tested. Therefore, similarity point of the new turbine test model was also existed between above two similarity points. It means that the design point for real gas was similar to the test point with the new turbine model.

  • PDF

Effect of Tip-Clearance on the Performance of a Supersonic Impulse Turbine (초음속 충동형 터빈의 팁간극에 따른 성능변화 연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.117-121
    • /
    • 2008
  • The effect of tip clearance on the performance of a supersonic impulse turbine was investigated experimentally. Test was performed using high pressure air in wide ranges of pressure ratio and rotational speeds. Test revealed that efficiency gradient of the subject turbine at a reference test point was a very low value of 0.05. Turbine efficiency was varied non-linearly with respect to tip clearance. It has been found that efficiency gradient is proportional to the cube of rotational speed at a fixed turbine pressure ratio. It also has been found that efficiency gradient shows its minimum at a reference test pressure ratio irrespective of rotational speeds.

  • PDF

Rotor Leading Edge Thickness Effect on Supersonic Impulse Turbine Performance (초음속 충동형 터빈의 로터 앞전 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • Turbopump, which is a part of 75 ton open cycle liquid rocket engine has a super sonic impulse turbine. This paper investigated the leading edge thickness effect on the turbine performance experimently. Two rotors were tested with the different leading edge thickness. The ratios (rotor thickness to Pitch) are 1.9 and 1.4 times to 30 ton turbine rotor. As a result, a rotor with 1.4 times ratio had a 1.5% higher efficiency gain than a rotor with 1.9 times ratio. The pressure ratio with the maximum efficiency on the same rotational speed was increased to the full expansion ratio of nozzle.

An experimental study on the flow characteristics of a supersonic turbine cascade with the leading edge chamfer angle (초음속 터빈의 익렬 앞전 모서리각에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.361-366
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the leading edge chamfer angle $(\gamma)$ of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

Numerical and Experimental Investigation on the Supersonic Impulse Turbine Design Performance Estimation Methodology (초음속 충동형 터빈의 설계성능 검증방법에 대한 해석 및 시험적 고찰)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • A methodology of design performance estimation for the supersonic impulse turbine was investigated. Relations of similarity condition and test nozzle area ratio were derived. Comparison of efficiencies between the turbines with real nozzle and test nozzle are made numerically and experimentally. The CFD results and test result confirmed that the turbine with test nozzle was able to predict real turbine performance. In addition, design performance of the supersonic impulse turbine also could be estimated using real nozzle in air-medium test. In this case, design efficiency was found at the pressure-ratio and velocity-ratio of similarity condition of test nozzle.