• Title/Summary/Keyword: 충돌 해석

Search Result 1,045, Processing Time 0.029 seconds

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock (열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법)

  • Park, Min-Young;Park, Young-Il;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

사용후연료 건식 저장용기의 전복 응력해석

  • 신동필;서기석;최병일;이홍영
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.436-436
    • /
    • 2004
  • 사용후 연료 건식 저장 용기가 낙하, 토네이도, 미사일, 홍수 및 지진으로 인한 사고에 대하여 전복이 발생되었을 때 강체 평면과 충돌에 의한 충돌 하중시의 구조 응력 평가하였다. 이를 위해 저장 용기의 무게 중심이 한계를 넘었을 때의 초기 전복 시작각을 무게 중심을 계산을 통해 구하였다. 상용 코드를 사용하여 전복 응력 해석 수행시 저장 용기의 강체 운동에 의하여 계산 시간이 길어지는 데, 이런 계산 시간을 줄이기 위해 일차 충돌 직전까지의 모델의 속도와 각속도 계산식을 이론적인 방법으로 구하여 해석 초기 조건으로 사용하는 방법에 대하여 제안하였다.(중략)

  • PDF

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

초고속 터보 분자펌프의 유동해석

  • Kim, In-Chan;Yun, Jun-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.90-90
    • /
    • 2011
  • 배기속도 2,500 L/s, 최고진공도 10-10 mbar를 구현할 대용량 복합 분자펌프 설계를 위한 2차원과 3차원 형상을 대상으로 실시하였다. 진공도가 10-5 mbar 이상이 되는 고진공도에서는 Knudsen 수가 102~107에 이르러 분자간 충돌을 거의 무시할 수 있게 되며, 이때의 유체해석 방법으로서는 통상 희박기체 해석법으로 많이 쓰이는 Direct Simulation Monte Carlo (DSMC) 방법보다, 충돌이 없는 분자의 자유운동을 모사하는 Monte Carlo 방법이 더 적합하게 된다. 본 연구에서는 다단계 rotor와 stator로 구성되는 복합분자 내 유동장에 Monte Carlo 해석법과 DSMC 방법을 모두 적용하여 유동해석을 실시하였다. 먼저 2차원 모델에 대한 해석을 실시하여 분자펌프의 성능에 중요한 영향을 미치는 설계변수로 날개각과 날개간격이 현저함을 확인하였으며, 이 설계변수들이 펌프의 주요성능 지표인 최대펌핑효율과 최대압축비에 미치는 영향을 다양한 3차원 유동해석을 통해 도출하였다. 유동해석 결과, 기체분자와 rotor 날개사이의 충돌 확률을 높이는 방안이 대체적으로 펌프의 성능을 향상시키는데 도움이 되는 것으로 나타났다.

  • PDF

An Analytical Approach to Collision Avoidance between Two Encountering Ships (교항하는 두 선박간의 충돌회피에 관한 해석적 접근)

  • Park, Jeong-Hong;Kim, Jin-Whan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • In this study, an analytical algorithm for collision avoidance is proposed, which is applicable to designing collision avoidance maneuvers for two encountering ships. The minimum separation distance is defined and an appropriate maneuver sequence is computed for safe and effective collision avoidance. Two approaches: 1) collision avoidance through speed change and 2) collision avoidance through heading change, are considered, and the initiation point of the avoidance maneuver is computed analytically using the geometric configuration of the two encountering ships. To verify the feasibility of the proposed algorithm, numerical simulations are carried out using a set of ship-to-ship encountering scenarios.

  • PDF

A Study on the Deformation and Perforation Problem for Steel Plates Subjected to High-Speed Collision and Superhigh-Speed Collision (고속충돌 및 초고속충돌 강판구조물의 대변형 관통문제에 관한 연구)

  • 원석희;이경언;고재용;이계희;이제명;백점기;이성로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.95-99
    • /
    • 2004
  • This paper describe inner-collision-characteristics of the ship structural plates when the projectile collides with plate-material using LS-DYNA3D which is general and useful finite element analysis tool in collision problem fields. The series analyses were carried out from high speed(41.56m/s-118.9m/s) to ultrahigh speed(544.05m/s-800m/s). Through these analyses we can approach empirical formula to estimate penetration limit of the ship structural plates with which the projectile of various speed collides.

  • PDF

Development and Verification of Simplified Collision Model for Pile Protective Structures (파일형 선박충돌방호공에 대한 간이충돌모델의 개발과 검증)

  • Lee, Gye Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, a simplified collision model of pile protective structures against a navigation vessel was proposed and verified. The model of pile protective structure were composed by two plastic hinges at below of cap slab and the inside of ground. A nonlinear equation of motions was developed in consideration of the kinematic energy, potential energy and deformation energy in collision event. The developed simplified model were verified by the precise finite element collision analysis of the vessel and the protective structure.

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF