• Title/Summary/Keyword: 충돌 해석

Search Result 1,045, Processing Time 0.022 seconds

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.359-371
    • /
    • 2013
  • This paper is the first paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear disposal canister under accidental drop and impact on to the ground. This paper performed the general theoretical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is intended to be theoretically formulated. The main content of the theoretical study is about the equation of motion in the multibody dynamics. On the basis of this study the impulsive force which is occurring in the multibody in the case of collision between multibody is theoretically formulated. The application of this theoretically formulated impulsive force to computing the impulsive force occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground is investigated.

Computational Analysis of Heracron Fabric at High-velocity Impact (Heracron 직물의 고속 충돌 해석)

  • Kim, YunHo;Choi, Chunghyeon;Kumar, Sarath Kumar Sathish;Cha, JiHun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • Advanced fiber fabrics have been utilized in not only anti-stabbing and bullet-proofing for body armor but also various industrial fields including vehicular armor and spacecraft structure. Furthermore, there have been a number of research to improve the ballistic performance of advanced fabrics introducing many computational approaches. In our research, an advanced fabric, Heracron manufactured in South Korea was modelled firstly using Autodyn, a commercial software specializing in impact and explosion phenomenon. The sensitivity of the input parameters was also confirmed by conducting simulations. To verify the numerical modelling, we measured and compared the simulation results with velocity decrements after impact involving one, three, and five layers of Heracron under 200-500 m/s impacts by an aluminum spherical projectile. The Heracron fabric was successfully modelled using Autodyn.

Turbomolecular Pump 내 Rotor-Stator의 형상 변화에 따른 유동의 수치적 해석

  • Kim, In-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.98-98
    • /
    • 2012
  • 최고진공도 10-10 mbar, 배기속도 2500 L/s를 구현할 대용량 복합 분자펌프(TMP) 설계를 위한 3차원 유동해석을 실시하였다. 진공도가 10-5 mbar 이상이 되는 고진공도에서는 Knudsen 수가 102~107에 이르러 분자간 충돌을 거의 무시할 수 있게 되며, 이때의 유체해석 방법으로서는 통상 희박기체 해석법으로 많이 쓰이는 Direct Simulation Monte Carlo (DSMC) 방법이나 Continuum fluid에 대한 Navier-Stokes 해석보다, 충돌이 없는 분자의 자유운동을 모사하는 Monte Carlo 방법이 더 적합할 수 있다. 본 연구에서는 다단계 rotor와 stator로 구성되는 복합분자 내 유동장에 Monte Carlo 해석법을 적용하여 유동해석을 실시하였다. 해석 방법의 타당성을 확인하기 위해 동일한 형상에 대해 Navier-Stokes 해석과 DSMC 해석을 병행하였다. 각각의 수치적 해석에서 공통적으로, TMP의 성능에 지배적인 영향을 미치는 설계변수는 rotor-stator의 날개각임이 확인되었고, 이 설계변수들의 최적값을 다양한 3차원 유동해석을 통해 도출하였다. 해석결과는 펌프설계에 적용되어 펌프 성능시험결과를 통해 확증된다.

  • PDF

Vessel Collision Analysis of an Underwater Soil Slope using Coupled Eulerian-Lagrangian Scheme 2: Parametric Study (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 2 : 매개변수연구)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, parametric analyses are performed using the coupled Eulerian-Lagrangian scheme for the collision behaviors of a vessel and an underwater slope that constitutes part of an artificial protective island. The vessel parameters considered in the analysis are bow angle, stem angle, draft, and impact velocity. The gradient of the slope, the friction coefficient between the bow and the slope, and soil strength are considered as parameters of the slope. For each parameter, the dissipated collision energy and the collision force are estimated from the behavior of the vessel, and the energy dissipation mechanism is identified in terms of the ground deformation. The collision force is assumed as an exponential function, and the effects of the parameters are estimated. As a result, only two parameters, the gradient of the slope and the friction coefficient between the vessel and the soil, can affect the exponential coefficient of the function. The dissipated energy by the soil can thus be estimated adequately. The relationship between the volume of the soil pushed out by the bow and the dissipated collision energy is estimated as a linear function. This relationship is independent of the magnitude of the collision energy, and affected more by the friction coefficient and the soil strength than by the parameters of the vessel.

Optimization of the Integrated Seat for Crashworthiness Improvement (일체형 시트의 충돌특성 개선을 위한 최적설계)

  • 이광기;이광순;박현민;최동훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.345-351
    • /
    • 2003
  • Due to increasing legal and market demands for safety in the automotive design process, the design of integrated seat is important more and mote because it should satisfy the conflict between stronger and lower weight for safety and environmental demands. In this study for crash simulations, the numerical simulations have been carried out using the explicit finite element program LS-Dyna according to the FMVSS 210 standard for safety test of seat. Since crash simulations are very time-consuming and a series of simulations that does not lead to a better result is very costly, the optimization method must be both efficient and reliable. As a result of that, statistical approaches such as design of experiments and response surface model have been successfully implemented to reduce time-consuming LS-Dyna simulations and optimize the safety and environmental demands together with nonlinear optimization algorithm. Design of experiments is used lot exploring the design space of maximum displacement and total weight and for building response surface models in order to minimize the maximum displacement and total weight of integrated seat.

Coasting and Post-impact Motion of a Vehicle With Tire Blowout (타이어 펑크 차량의 주행 및 충돌후 거동)

  • Han, Inhwan;Lim, Sanghyun;Park, Jong-Chan;Choi, Jihun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.503-512
    • /
    • 2014
  • In this paper, various tire blow-out force experiment data were collected and analyzed to obtain approximate values of related coefficients such as rolling resistance, self-aligning torque, cornering stiffness, and radial stiffness for the analysis of the motion of vehicles with tire blow-outs. These coefficients related to tire blow-outs were input into a vehicle accident analysis program to simulate and examine the effects of tire blow-outs. Various configurations and velocities of vehicle collisions without tire blow-outs were also used as reference to establish collision events of vehicle collisions with tire blow-outs. For the events, the simulation analysis was performed and collision characteristics were obtained. Consideration of tire blow-outs or damages suggested in this study will greatly contribute to more reliable vehicle accident reconstructions.

Collision Behavior Comparison of Offshore Wind Tower as Type of Support Structure (지지구조의 형식에 따른 해상풍력타워의 선박충돌거동비교)

  • Lee, Gye-Hee;Kwag, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • The collision behaviors of the tripod and jacket structures, which are considered as support structures for offshore wind towers at the Southwest sea of Korea, were compared by nonlinear dynamic analysis. These structures, designed for the 3 MW capacity of the wind towers, were modeled using shell elements with nonlinear behaviors, and the tower structure including the nacelle, was modeled by beam and mass elements with elastic materials. The mass of the tripod structure was approximately 1.66 times that of the jacket structure. A barge and commercial ship were modeled as the collision vessel. To consider the tidal conditions in the region, the collision levels were varied from -3.5 m to 3.5 m of the mean sea level. In addition, the collision behaviors were evaluated as increasing the minimum collision energy at the collision speed (=2.6 m/s) of each vessel by four times, respectively. Accordingly, the plastic energy dissipation ratios of the vessel were increased as the stiffness of collision region. The deformations in the wind tower occurred from vibration to collapse of conditions. The tripod structure demonstrated more collision resistance than the jacket structure. This is considered to be due to the concentrated centralized rigidity and amount of steel utilized.

NE/NASTRAN과 FEMAP을 이용한 선박과 케이슨의 충돌 응답 해석

  • 주서진;백영인;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.674-684
    • /
    • 2002
  • 선박이 물품의 제하 및 적하를 위하여 컨테이너 부두에 접항시 선박의 케이슨과의 충돌에 의한 케이슨의 발생 응력을 파악함으로써 구조 안정성을 검토하였다. 선박이 일정 속도로 항만에 접항시 선박은 케이슨에 부착된 방충재와 충돌하게 된다. 케이슨에 부착된 방충재는 선박의 운동에너지를 흡수하여 케이슨으로 전달되는 전달 에너지를 최소화하여 케이슨의 구조물에 발행하는 응력을 최소화하도록 설계한다. (중략)

  • PDF

Study on the numerical simulation of bird strike for composite container of external auxiliary fuel tank for rotorcraft (회전익항공기 외부 보조연료탱크용 복합재 컨테이너 조류충돌 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.709-713
    • /
    • 2017
  • In urgent situations such as crashes, the integrity of an aircraft's fuel tank is directly related to the survivability of the crew. Thus, an external auxiliary fuel tank should be robust against bird strikes. In this study, a numerical analysis was carried out using impact analysis software to analyze the influence of bird strike on a composite container for an external auxiliary fuel tank. The structure was modeled as a shell element, and the fluid and bird were modeled by the particle method. The behavior of the internal fluid was also examined. The maximum stress, deformation, and strain of the composite container were also calculated.

Simulation Analysis on the Impact of Racing Car with Space Frame (스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Bang, Seung-Ok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2341-2348
    • /
    • 2010
  • In this paper, strain and stress on space frame are analyzed at racing car under crash loads. As the deformation is reduced to a minimum during crash and the vulnerable parts are grasped, the safety of driver is ensured. The vehicle frame is modelled with truss structure by inputting the material property of carbon steel on finite element analysis. The increase of impulse momentum is due to speed change at frontal collision. This influence effected on vehicle frame is also analyzed by ANSYS program. The deformation of the frame is studied by applying the crash loads at front, side and rear directions. Though the influence on the seat of driver is small at frontal and rear crash, the deformation due to impact is progressed into this seat. The safety of frame is enhanced by making up for these weak deformations and these results of simulation analysis can be applied to the production of the actual vehicle frame.