• Title/Summary/Keyword: 충돌제트

Search Result 326, Processing Time 0.023 seconds

Heat Transfer Characteristics by Rods in Transition Region of Impinging Air Jet (충돌제트 천이영역에서 로드에 의한 열전달특성)

  • Kum, Sung-Min
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2011
  • This research has been proceeded over the transition region(H/B=10) of two-dimensional impinging air jet system, in which square rods has been set up in front of heating surface in order to increase heat transfer. The objective of this research was to investigate the characteristics of heat transfer and air flow, in cases the clearance from rods to heating surface(C=1, 2, 4, 6 mm) and the width of rods(W=4, 6, 8 mm) changed. And this research compared the above with the experimentation without rods. As result, heat transfer performance was best under the condition of C=1 mm, and as the width is 8 mm, it is largely influenced by eddies and acceleration in case width of rods changed.

Characteristics of Plane Impinging Jets(1) - Slit-tone - (평면 충돌제트의 불안정 특성(1) -슬릿음-)

  • 권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2004
  • In this study, slit-tones by plane impinging jet are investigated experimentally over the whole subsonic flow range, especially at low speeds, in order to obtain the instability behaviour of impinging plane jet. Slit-tones are generated at low speeds associated with laminar shear layer instability as well as at high speeds associated with turbulent instability. Most of low-speed slit-tones are induced by symmetric mode instability unless the slit is not so wide, in which case antisymmetric modes are induced like edge-tones. It is found that the frequencies at low speeds ate controled by the unstable condition of the vortex at the nozzle exit and its pairings by which the frequencies are decreased by half. In the case of symmetric modes related with low-speed slit-tones, frequencies lower than those associated with one-step pairings are not found.

수직평판에 충돌하는 축대칭 초음속 제트의 수치 해석

  • 신완순;이택상;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.20-20
    • /
    • 2000
  • 초음속 과소팽창 제트는 베럴충격파(Barrel shock), 팽창파(Expansion fan), 반사충격파(Reflected shocks), 마하디스크(Mach disc), 그리고 제트경계면(Exhaust-gas Jet boundary)로 이루어지는 여러 충격파 셀(Shock ceil)의 유동 형태를 나타난다. 이러한 초음속 과소팽창 제트가 수직 평판에 충돌하면 초음속 자유 제트와는 다른 변형된 유동장이 형성된다.

  • PDF

Numerical Simulation of Axisymmetric Supersonic let Impingement on a Flat Plate (수직평판에 충돌하는 축대칭 초음속 제트의 수치 연구)

  • 신완순;이택상;박종호;김윤곤;심우건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 2000
  • When supersonic underexpanded jets are exhausted from the nozzle, complex shock cell configurations such as barrel shock, expansion fan, Mach disc, and exhaust-gas jet boundary are appeared repetitively. The shock cell is smeared by turbulence dissipation and disappeared in long distance from the nozzle. When underexpanded jet is suddenly impinged on a flat plate, it forms very complex flow structure. In this paper, we solve compressible Wavier-Stokes equation adapting finite volume method to obtain jet impingement flow structure and compare calculated data with experimental ones. It is shown that numerical simulation data are in good agreement with experimental one in a short distance between nozzle exit and flat plate and little influence of underexpanded ratio is appeared in jet impingement now distribution.

  • PDF

Empirical Prediction of Acoustic Load of Launch Vehicle Including Jet Impingement (충돌제트 현상을 고려한 발사체 음향하중의 경험적 예측)

  • Park, Seoryong;Lee, Kyuho;Kong, Byunghak;Kang, Kyung Tai;Jang, Seokjong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-162
    • /
    • 2014
  • Empirical prediction method of the acoustic load on the fairing is based on jet experimental data on the basis of similarity principle. Representative empirical prediction method, DSM-II(Distributed Source Method-II), is a distributing source method along the jet plume. But the empirical prediction model is limited to reflect the impingement source in real environment because it is based on the free jet data. So, we propose a empirical prediction method considering the impinging jet effect by adding a impingement source in the existing prediction method. Considering the additional source's displacement, spectrum, strength and directivity, we calculate the acoustic load on the KSR-III(Korean Sounding Rocket-III) rocket and compare the results with the existing method and experiment data.

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

An Experimental Study of Flow Characteristics by Impinging Jet on a Flat Plate (평판에의 충돌제트에 의한 유동특성에 대한 실험적 연구)

  • 신필권;신완순;이택상;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.18-18
    • /
    • 1998
  • 평판에 충돌하는 초음속 세트에 관한 연구는 수직/단거리 이·착륙기의 발진, 미사일 발사시스템, 다단계 로켓 분리 등 실제적인 분야에 응용되고 있으며 고온의 충돌제트와 화염에 의한 가열문제와 관련된 산입분야에서도 많은 연구가 이루어지고 있다. 과소팽창하는 초음속 제트가 평판에 충돌할 때 Barrel shock, exhaust gas boundary, Mach disk, contact surface, reflected shock, plate shock, stagnation bubble 등 매우 복잡한 유동 구조가 표면에 나타나는데 이것은 평판으로부터 반사된 shock과 free jet의 충격파 구조 사이에서의 상호간섭 때문이다. 노즐로부터 방출되는 고속, 고온가스가 주변 장비 등에 부딪힐 때 발생하는 이러한 복잡한 간섭현상의 연구는 관련 주변장비 설계 및 상황예측에 필수적인 자료를 제공하며 이해를 도와준다.

  • PDF