• 제목/요약/키워드: 충돌제트냉각

검색결과 46건 처리시간 0.021초

터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석 (Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade)

  • 김완식;조형희
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.14-23
    • /
    • 1998
  • 본 연구에서는 제트 추진 기관의 터빈 익렬에서의 유동과 대기중에 부유되어 있는 입자들이 제트엔진 내부로 유입될 경우 이에 따른 압축기 날개의 마모 및 충돌 부위를 예측하기 위하여 수치해석을 수행하였다. 일반적으로 각종 항공기의 추진 기관용 가스 터빈 엔진은 대기중에 부유되어 있는 각종 입자들의 영향을 받게 된다. 특히, 화산 지역, 먼지 입자 부유물이 많은 공업지대 또는 사막지역을 비행하는 항공기의 경우는 모래 알갱이, 먼지, 및 연소 입자의 직접적인 영향을 받아 각 요소들에 심각한 부식 및 마모가 발생됨으로써 성능 저하 및 냉각통로의 막힘, 압축기와 터빈 날개의 손상 등이 예측되어 진다. 이러한 손상들은 초기에는 미세하게 발생하지만, 손상 정도가 점점 누적됨에 따라서 항공기의 안전 운전에 심각한 위험 요소로서 작용할 수 있으며, 경제적으로도 기관의 유지 보수비용의 증가를 가져 올 수 있다. 따라서 압축기에 화산재 또는 대기중에 부유되어 있는 금속 입자나 먼지 입자 등이 유입되었을 경우, 압축기 날개의 손상 부위와 정도를 예측하는 것이 필요하다. 따라서 본 연구에서는 다양한 입자의 유입각에서 라그랑지안 방법을 적용하여 압축기 날개 유로로 부유된 입자의 궤적을 예측하고 입자의 충돌에 의한 충격량을 계산하였다. 아울러 정량적인 충돌량을 해석하기 위하여 입자 충돌 계수를 정의하여 압축기 날개 표면의 충돌특성을 해석하였다. 세라믹과 연강에 대한 날개 표면의 마모량을 계산하였으며, 이러한 예측들을 통하여 표면에의 코팅 등의 개선책을 찾을 수 있었다.

  • PDF

연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구 (Experimental study to enhance cooling effects on total-coverage combustor wall)

  • 조형희
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

충돌제트를 이용한 pedestal 형상의 칩 냉각연구 (Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling)

  • 이대희;정승훈;정영석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.124-130
    • /
    • 2001
  • The heat transfer and flow measurements were made on a cylindrical pedestal mounted on a flat plate with a turbulent impinging air jet. The heat transfer coefficient distributions on the flat plate were measured using the shroud-transient technique and liquid crystal was used to measure the surface temperature. The jet Reynolds number (Re) is 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.5, the dimensionless 2nd pedestal diameter-to-height ($H/D_2$) from 0 to 0.4 and the distance from the stagnation point to 2nd pedestal (p/D). The results show that for H/D = 0.5 to 1.5, the Nusselt number distributions on the plate surface exhibit a maximum between $r/d\;{\cong}\;1.0$ and 1.5. The presence of the pedestal appears to cause the flow separation and reattachment on the plate surface, which results in the maximum heal transfer coefficient. Also, for p/D = 2.5 and $H/D_2$ = 0.3, the local Nusselt number in the region corresponding to $r/d\;{\cong}\;1.1$ was increased up to 50% compared to that for $H/D_2=0$.

  • PDF

수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션 (Simulation of plate deformation due to line heating considering water cooling effects)

  • 고대은;하윤석
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2470-2476
    • /
    • 2011
  • 실험적인 방법과 수치적인 방법의 장점을 취한 고유변형도법은 선상가열에 의한 판의 변형을 예측하는데 매우 유용하다. 고유변형도법을 이용한 선상가열에 의한 판 변형의 예측을 위해서는 고유변형도의 크기와 영역을 적절하게 결정하는 것이 중요한데, 선상가열 후의 실제 냉각속도에 따라 강의 상변태 특성이 달라지므로 이 또한 고유변형도 결정에 있어서 고려되어야 한다. 조선 현장에서 많이 사용되는 수냉과정을 모사하기 위해 충돌제트, 막비등, 복사 효과를 포함하는 열전달 해석법을 제안하였으며, 이를 통해 고유변형도 영역의 실제 냉각속도와 상변태 분율을 구할 수 있다. 상변태 분율에 따른 재료의 물성치를 반영함으로써 선상가열에 의한 판의 변형을 보다 정도 있게 예측하는 것이 가능하다.

충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구 (The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet)

  • 이필종;최해원;이승홍
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.

공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF