• Title/Summary/Keyword: 충돌에너지흡수

Search Result 106, Processing Time 0.024 seconds

A Study on Design and Dynamic Characteristics of Tearing Tubes Applied in Tram (트램용 테어링 튜브 에너지흡수부재 설계와 동적 특성 연구)

  • Choi, Jiwon;Kwon, Taesoo;Jung, Hyunseung;Kim, Jinsung;Kwak, Jaeho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.524-536
    • /
    • 2015
  • The paper aims to design and verify tearing tube type energy absorption device applied in tram to ensure safety in case of collision accident. Energy capacity of tearing tube is determinated based on EN15227 and Standard Collision Scenarios Criterion in Detail in Republic of Korea. Tearing tube is designed based on theoretical model suggested by X.Huang et al. and assumption by T.Y. Reddy et al. Real scale collision tests are conducted to analyze the energy absorption characteristics and deformation mode. Bending of curl tips is absorbed collision energy when curl tips and tube body are contacted to each other from the tests and we suggest and include the formula on bending of curl tips in theoretical model.

The study on the buckling instability of tube type crash energy absorber (튜브형 충돌에너지흡수부재의 좌굴불안전성에 대한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1564-1570
    • /
    • 2007
  • There are normally two types of the energy absorbers used in the crashworthiness of trains. The first is a structure type, which mainly used in not only the primary structures of the train but also the crash energy absorbers at the accident. The second is a module type, which just absorbs the crash energy independent of the primary structures and attached to the structures of the train. The expansion and inversion tube are widely used as the module type crash energy absorbers, especially in the train. The tubes should not be buckled under the load acting on the end of the tube in longitudinal direction during absorbing the crash energy. The buckling stability of the tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the tubes on the buckling load are studied by using the ABAQUS, a commercial finite element analysis program, and then presents the guideline to design the tube. The analysis processes to compute the buckling load consist of a linear buckling analysis and a nonlinear post-buckling analysis. The buckling modes are evaluated by the linear buckling analysis, as using these modes, the buckling loads are computed by the nonlinear post-buckling analysis.

  • PDF

Ultimate Capacity of Guardrail Supporting Pile Subjected to Lateral Impact Load Using Centrifuge Model Test (원심모형실험을 통한 차량방호울타리 지지말뚝의 수평방향 충격하중에 대한 극한지지력)

  • Yun, Jong Seok;Lee, Min Jy;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.25-36
    • /
    • 2019
  • The safety barrier is installed on road embankment to prevent vehicles from falling into road side slope. Among the safety barrier, flexible guardrails are usually installed. The flexible guardrail generally consists of a protection cross-beam and supporting in-line piles. These guardrail piles are installed nearby slope edge of road embankment because the side area of the road is much narrow. The protection cross-beam absorbs impact energy caused by vehicle collision. The pile-soil interaction also absorbs the rest of the impact energy and then, finally, the flexible guardrail system resists the impact load. This paper aims to investigate the pile-soil interaction subjected to impact load using centrifuge model tests. In this study, a single pile was installed in compacted residual soil and loaded under lateral impact load. An impact loading system was designed and developed available on centrifuge tests. Using this loading system, a parametric study was performed and the parameters include types of loading and ground. Finally, the ultimate bearing capacity of supporting pile under impact load was analyzed using load-displacement curve and soil reaction pressure distributions at ultimate were evaluated and compared with previous studies.

Analysis of Impact Characteristics of Bonded Dissimilar Materials for Center Pillar (센터필라 적용을 위한 이종 접합강의 충격 특성 해석에 관한 연구)

  • Nam, Ki-Woo;Park, Sang-Hyun;Yoo, Jung-Su;Lee, Sang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.929-934
    • /
    • 2012
  • This study was carried out to analyze the dynamic characteristics of laser tailor-welded blanks (TWBs) made of dissimilar materials. The analysis was performed using Hyper Works 10.0 with Solver LS-DYNA v.971. 2D-Shell was used as the modeling element, and the number of elements and nodes was 35,641 and 36,561, respectively. The impact speed was 10 km/h. To analyze the impact characteristics according to the height of the weld line for the upper and lower parts of the center pillar, the length of the lower part was set as 300 and 400 mm. When the lower part was made of SPFC980 steel with a length of 300 mm, the deformation was the smallest and the absorbed energy of the impact force was the largest. On based the lower part of center pillar, the position of TWB shows the shorter and the better value. In other words, the performance depended on the proportion of the upper part made of high-strength SABC1470 steel. A lower part made of SPFH590 steel showed large deformation. In contrast, a lower part made of SPFC980 steel showed significantly lesser deformation. Therefore, the impact performance of a lower part made of SPFC980 steel with a length of 300 mm showed the best analysis result.

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Effect on the surface passivation of i-a-Si:H thin films formed on multi-crystalline Si wafer (유도결합플라즈마 CVD법을 이용한 비정질 실리콘 박막증착을 통한 다결정 실리콘 기판의 표면 passivation 특성평가)

  • Jeong, Chaehwan;Ryu, Sang;Lee, Jong-Ho;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • 수소화된 비정질 실리콘 박막을 이용한 반도체는 현재 태양전지, 트랜지스터, 매트릭스 배열 및 이미지 센서 등의 분야에서 이용되고 있다. 자세히 이야기 하면, 여러 가지의 광전효과 물질에 대한 특성이 있으며, 가시광선영역에 대하여 > $10^5cm^{-1}$이상의 매우 높은 광흡수계수와 낮은 온도를 갖는 증착공정 등이 있다. 박막의 밴드갭은 약 1.6~1.8eV로서 태양전지의 흡수층과 passivation층으로 적절하다. 여러 가지 종류의 태양전지 중 비정질 실리콘 박막/결정질 실리콘 기판의 구조로 이루어진 이종접합 태양전지는 저온에서 공정이 가능한 대표적인 것으로서 HIT(Heterojunction with Intrinsic Thin layer)구조로 산요사에 의해 제안된 것이다. 이것은 결정질 실리콘 기판과 도핑된 비정질 실리콘 박막사이에 얇은 진성층 비정질실리콘 박막을 삽입함으로서, 캐리어 전송을 좋게하여 실리콘 기판 표면의 passivation효과를 증대시키는 결과를 가지고 온다. 실험실 규모에서는 약 20%이상의 효율을 보이고 있으며, 모듈에서는 19.5%의 높은 효율을 보이고 있어 실리콘 기판을 이용한 고효율 태양전지로서 각광을 받고 있다. 이러한 이종접합 태양전지의 대부분은 단결정 실리콘을 사용하고 있는데, 점차적으로 다결정 실리콘 기판으로 추세가 바뀌고 있어, 여기에 맞는 표면 passivation 공정 및 분석이 필요하다. 본 발표에서는 다결정 실리콘 기판위에 진성층 비정질 실리콘 박막을 유도결합 플라즈마 화학기상 증착법(ICP-CVD)을 이용하여 제조하여 passivation 효과를 분석한다. 일반적으로 ICP는 CCP(coupled charged plasma)에 비해 약 100배 이상 높은 플라즈마 밀도를 가지고 있으며, 이온 충돌같은 표면으로 작용하는 것들이 기존 방식에 비해서 작다라는 장점이 있다. 먼저, 유리기판을 사용하여 ICP-CVD 챔버내에 이송 한 후 플라즈마 파워, 온도 및 가스비(SiH4/H2)에 따른 진성층 비정질 실리콘 박막을 증착 한 후, 밴드갭, 전도도 및 결합구조 등에 대한 결과를 분석한 후, 최적의 값을 가지고 250um의 두께를 갖는 다결정 실리콘을 기판위에 증착을 한다. 두께(1~20nm)에 따라 표면의 passivation이 되는 정도를 QSSPCD(Quasi steady state Photoconductive Decay)법에 의하여 소수캐리어의 이동거리, 재결합율 및 수명 등에 대한 측정 및 분석을 통하여 다결정 실리콘 기판의 passivation effect를 확인한다. 제시된 데이터를 바탕으로 향후 다결정 HIT셀 제조를 통해 태양전지 효율에 대한 특성을 비교하고자 한다.

  • PDF