• Title/Summary/Keyword: 충돌수분류

Search Result 32, Processing Time 0.019 seconds

Cooling Characteristics of a Hot Steel Plate by a Circular Impinging Liquid Jet (원형수직 충돌 수분류에 의한 고온강판의 냉각특성 연구)

  • 오승묵;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1150-1155
    • /
    • 1992
  • The cooling characteristics of a hot steel plate by a laminar impinging water bar were investigated experimentally. The dynamic parameters investigated were nozzle height L between nozzle and the hot plate, flow rate Q, and initial cooling temperature. Because the boiling phenomena on a hot steel plate are unsteady and change discontinuously, it is difficult to analyze the cooling characteristics directly. In this study the cooling efficiency was estimated by using the temperature decay rates and expansion speed of the water cooling zone. Temperature in the water cooling zone decreased rapidly and the radius of the water cooling zone expanded nearly in proportion to square root of the cooling time. With increasing initial temperature of a hot steel plate, the cooling efficiency became descendent. The cooling curve in the case of L/D = 30 showed the largest temperature decay rate and excellent cooling performance.

Cooling of a Rotating Heated Flat Plate by Water Jet Impingement (회전전열평판(回轉傳熱平板)의 충돌수분류(衝突水噴流)에 의한 냉각(冷却))

  • Jeon, Sung-Taek;Kim, Yeun-Young;Lee, Jong-Su;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.47-64
    • /
    • 1995
  • An experimental investigation is carried out to see the local heat transfer characteristics of a rotating heated flat plate surface with constant heat flux when a normal water jet is impinging on this surface. The effects of jet Reynolds number, rotating Reynolds number are investigated while the distance between the nozzle and the flat plate is set fixed. As a result, correlations to relate the local Nusselt number to the local rotational Reynolds number, jet Prandtl number and the dimensionless radial position are presented.

  • PDF

A Study on Saturated Boiling Heat Transfer in Upward Rectangular Impinging Water Jet System (연직상향(鉛直上向) 사각충돌수분류(四角衝突水噴流)의 포화비등 열전달에 관한 연구)

  • Lee, J.S.;Ohm, K.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.395-403
    • /
    • 1991
  • The purpose of this investigation was to characterize nucleate boiling and burn-out heat flux for rectangular free jet with saturated water impinging perpendicularly and upward against a flat uniform heat flux surface. Heat flux measured for Reynolds number based on rectangular nozzle width and for aspect ratio. The result of nucleate boiling heat transfer was presented nondimensional experimental equation including Nusselt, Boiling, Subcooling, Reynolds and Weber number. The effect of aspect ratio of heated surface in the burn-out heat flux had not appeared distinctly. But for the same aspect ratio, burn-out heat flux increased linearly with increment of nozzle exit velocity.

  • PDF

Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect (표면거칠기 효과에 따른 스프레이 냉각의 열전달 향상 연구)

  • Lee, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.203-212
    • /
    • 2010
  • Water spray cooling has been widely used in a variety of industrial applications. The present study concentrated on quantitative measurements of the heat flux and heat transfer coefficient by water spray as it impinges on the rough surface of a hot steel plate at $900^{\circ}C$. A novel experimental technique was developed for a hightemperature heat flux gauge with a test block, cartridge heaters, and thermocouples that was used to measure the surface heat flux information on the hot steel plate for local heat flux measurements. The roles of the surface roughness on heat transfer are presented in this paper for well-characterized four rough surfaces with average rms roughness heights of $40-80{\mu}M$. The results show that the local heat transfer for rough surfaces is higher than that for a smooth surface. Heat transfer can be significantly increased by the presence of surface roughness elements, which can disrupt the thin thermal boundary layer. In addition, the heat transfer enhancement mechanism on a rough surface can be investigated by a different boiling regime.

The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet (충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.

Critical Heat Flux of an Impinging Water Jet on a Heated Surface with Boiling (비등을 수반하는 발열면에 충돌하는 수분류의 임계열유속에 관한 연구)

  • Lee, Jong-Su;Kim, Heuy-Dong;Choi, Kuk-Kwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.485-494
    • /
    • 2000
  • The purpose of this paper is to investigate a critical heat flux(CHF) during forced convective subcooled and saturated boiling in free water jet system impinged on a rectangular heated surface. The surface is supplied with subcooled or saturated water through a rectangular jet. Experimental parameters studied are a width of heated surface, a height of supplementary water and a degree of subcooling. Incipient boiling point is observed in the temperature of 6${\~}8^{\circ}C$ of superheat of test specimen. CHF depends on jet velocity for various boiling-involved coolant system. CHF also is proportional to the nozzle exit velocity to the power of n, where n is 0.55 and 0.8 for subcooled and saturated boiling, respectively. CHF is enhanced with a higher jet velocity, higher degree of subcooling and smaller width of a heated surface.

A Study on Heat Transfer Augmentation in Rectangular Impinging Water Jet System (사각(四角) 충돌수분류(衝突水噴流)의 열전달증진(熱傳達增進)에 관(關)한 연구(硏究))

  • Park, S.Y.;Lee, J.S.;Ohm, K.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.42-50
    • /
    • 1991
  • The purpose of this study is an augmentation of heat transfer in the case of upward rectangular impinging water jet system. The variables of this study are nozzle-to-heated surface distance, jet velocity and supplementary water height. Optimum heights of supplementary water which augment the heat transfer rate are S/B=2 for H/B=30 and S/B=I for H/B=40, 50. On the Y-direction of nozzle, there exhibits the secondary peak of heat transfer coefficient when supplementary water is not used, however using the supplementary water, it does not exhibits. In the case of using supplementary water, heat transfer coefficient increases not only in stagnation region but also in wall jet region.

  • PDF

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

Heat Transfer Characteristics in Wall Jet Region with Impinging Water Jet (충돌수분류에 의한 벽면분류 영역에서의 전열특성)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 1984
  • The purpose of this investigation is to study heat transfer characteristics in wall jet region on a flat plate caused by upward impinging water jet. In the wall jet region, heat transfer results by impinging water jet are being compared with the ones with supplementary water. As the radius increases, the heat transfer coefficient in the wall jet region consquently decreases, but decreasing nozzle-heat plate distance, the reduction rate increases. The experimental equation is expressed as follows : $$\frac{N_{ur}}{P_r^{0.4}}{\cdot}\overline{\xi}=m(\overline{\eta}{\codt}Re{\delta})^n,\;m=0.034\~0.056,\;n=1.74\~2.007$$ The optimum height of supplementary water is obtained to improve heat transfer effect of wall jet region.

  • PDF

An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet (충돌수분류의 천이 및 막비등열전달에 관한 연구)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF