• 제목/요약/키워드: 충돌력

검색결과 263건 처리시간 0.031초

The Study for the Evaluation of the Ship Collision Force to the Substructure of Bridges (교각에 작용하는 선박의 충돌력 산정에 대한 연구)

  • Hong, Kwan-Young;Lee, Gye-Hee;Chung, Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.738-741
    • /
    • 2010
  • 최근 국내에서 해상교량 건설이 증가하면서 교량에 충돌하는 선박의 충돌력에 대한 관심도 증가하지만 선박충돌력에 대한 국내 기준은 AASHTO LRFD에 근거를 두고 있는 실정이다. AASHTO LRFD에 의한 선박충돌력은 Woisin의 평균충돌력 개념에 바탕을 두고 있으며, 충돌속도가 증가함에 따라 AASHTO LRFD에서 제시하는 충돌력의 변화곡선을 따르고 있다. 하지만 AASHTO에서 제시된 충돌력 변화곡선은 선박의 최대충돌력 변화곡선과 같이 선형적 변화를 보이는 반면, 본 선박 충돌해석 결과의 평균충돌력은 최대충돌력의 선형적 변화거동과 일치하지 않는 것으로 나타났다. 따라서 본 논문에서는 선박의 비선형 충돌해석을 통하여 AASHTO LRFD에 의해 산정되는 선박충돌력의 부적절성을 거론하였다.

  • PDF

A Study for the Evaluation of Ship Collision Forces for the Design of Bridge Pier I : Mean Collision Force (교각에 작용하는 설계선박충돌력 산정에 관한 연구 I : 평균충돌력)

  • Lee, Gye Hee;Hong, Kwan Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제31권3A호
    • /
    • pp.199-206
    • /
    • 2011
  • In Korea, the current design codes for the bridge vessel collision load are based on AASHTO LRFD code which derived from the mean collision forces of the Woisin's test. To estimate the conservativeness of the code, in this study, the mean forces of head on collisions were evaluated from the mass-acceleration relationship of vessel and the deformation-kinetic energy relationship of bow those obtained from the series of nonlinear finite element analysis, and the mean forces were compared to that in AASHTO design code. As results, the variations of the mean forces versus the sizes of vessels were represented similar tendency, even those of the code are very conservative. However, the variations of mean collision force versus those of collision speeds were dominated by the plastic deformation of bow and it was differ from those of the code that have linear relationship with the collision speeds.

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model (신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제28권1호
    • /
    • pp.175-183
    • /
    • 2022
  • The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권4호
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground (사고로 지면에 추락낙하 충돌하는 고준위폐기물 처분용기에 발생하는 충격력)

  • Kwon, Young Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제40권5호
    • /
    • pp.469-481
    • /
    • 2016
  • In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제27권5호
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

Analytical Closed Form Solution for the Impact Load of a Collision between Rigid Bodies and its Application to a Spent Nuclear Fuel Disposal Canister Accidentally Dropped and Impacted on the Ground: Application(Numerical Analysis) (강체간의 충돌에 의한 충격력에 대한 수학적 정해 및 고준위폐기물 처분용기의 지면 추락낙하사고 시의 충돌충격에의 응용: 적용(수치해석))

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제28권5호
    • /
    • pp.451-457
    • /
    • 2015
  • This paper presents the analytical closed form solution for the impact load of a collision between rigid bodies and its application to a spent nuclear fuel disposal canister accidentally dropped and impacted on the ground. This paper performed a study on the numerical rigid body dynamic analysis to compute the impact load between two rigid bodies, especially, the impulsive force which is applied to the spent nuclear fuel disposal canister in the accidental drop and impact event on the ground. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact event on the ground and required in the process of structural safety design of the canister is computed numerically. The main content of this numerical study is about the technical method how to compute the impulsive force applied to the canister under the accidental drop and impact event on the ground by using the commercial computer code for the rigid body dynamic analysis. On the basis of this study a problem to compute the impulsive force which is occurring in the canister in the case of collision with the ground is numerically treated. This numerically computed impulsive force is compared with the theoretical value, which shows a good agreement.

경사낙하 충돌조건하의 사용후핵연료 수송용기의 충돌거동

  • 구정회;서기석;정성환;도재범;김영진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.885-890
    • /
    • 1995
  • 사용후핵연료 수송용기는 충돌사고에 대한 구조적 건전성을 입증하기 위하여 9 m 자유낙하조건에 대하여 수송용기의 충돌거동을 평가해야 한다. 본 연구의 목적은 수송용기가 9 m 높이에서 충돌면과 경사각을 갖고 충돌할 때의 동적거동을 파악하기 위한 것이다. 수송용기가 충돌과 함께 회전하며 연속충돌을 일으키는 45$^{\circ}$ 이하의 작은 경사각을 갖고 충돌할 매 수송용기에 발생하는 응력, 가속도, 충돌력 등을 분석하여 동적거동을 파악하였다. 또한, 수송용기의 경사각도를 변화시키며, 경사각도의 변화가 수송용기의 동적 거동에 미치는 영향을 파악하였다.

  • PDF

Assessment of Impact Resistance Performance of Post-tensioned Curved Wall using Numerical Impact Analysis (긴장력이 도입된 곡면벽체의 충돌저항성능 수치해석평가)

  • Chung, Chul-Hun;Lee, Jungwhee;Jung, Raeyoung;Yu, Tae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권2호
    • /
    • pp.161-167
    • /
    • 2016
  • In this study, the effect of wall curvature and post-tension force on impact resistance is evaluated by numerical analysis method. A total of twelve cases with two parameters such as wall shape of flat and curved, and consideration of post-tensioning force were included in this study. A 3D detailed finite element model of commercial passenger plane engine is utilized as projectile. The depths of penetration and central displacement calculated from the numerical simulations were compared and analysed. As the results of the numerical simulations of this study, penetration depth was reduced approximately 60~80% due to the application of post-tension force, but the decrease of maximum central displacement was not remarkable. Also, the effect of curvature was relatively insignificant.

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제26권5호
    • /
    • pp.359-371
    • /
    • 2013
  • This paper is the first paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear disposal canister under accidental drop and impact on to the ground. This paper performed the general theoretical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is intended to be theoretically formulated. The main content of the theoretical study is about the equation of motion in the multibody dynamics. On the basis of this study the impulsive force which is occurring in the multibody in the case of collision between multibody is theoretically formulated. The application of this theoretically formulated impulsive force to computing the impulsive force occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground is investigated.