• Title/Summary/Keyword: 충격 실험

Search Result 1,402, Processing Time 0.029 seconds

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

Impact Signal Monitoring of a Composite Structure Using Piezoelectric Paint Sensor (압전 페인트 센서를 이용한 복합재 구조물의 충격 신호 감지)

  • Park, Seung-Bok;Han, Dae-Hyun;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.141-145
    • /
    • 2014
  • This paper presents a structural health monitoring method using piezoelectric paint sensor designed for an impact sensor. The piezoelectric paint sensor can be flexibly deposited onto most structural surfaces in a thin form of the paint, and measure impact signals without any external device such as a power amplifier. In this study, a composite plate having four zones coated with piezoelectric paint was used for impact monitoring test. The sensitivity of the piezoelectric paint sensor was obtained by measuring the output voltages against the impact force. In addition to the sensitivity measurement, the impact position has been also estimated by comparing the output signals of the paint sensors when the impact occurs on the specimen.

Measured Effect of Shock Wave on the Stability Limits of Supersonic Hydrogen-Air Flames (충격파가 초음속 수소-공기 화염의 안정한계에 미치는 영향)

  • Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 1999
  • Measured shock wave effects were investigated by changing shock strength and position with particular emphasis on the stability limits of hydrogen-air jet flames. For this purpose, a supersonic nonpremixed, jet-like flame was stabilized along the axis of a Mach 2.5 wind tunnel, and wedges were mounted on the sidewall in order to interact oblique shock waves with the flame. This experiment was the first reacting flow experiment interacting with shock waves. Schilieren visualization pictures, wall static pressures, and flame stability limits were measured and compared to corresponding flames without shock-flame interaction. Substantial improvements in the flame stability limits were achieved by properly interacting the shock waves with the flameholding recirculation zone. The reason for the significant improvement in flame stability limits is believed to be the adverse pressure gradient caused by the shock, which can elongate the recirculation zone.

  • PDF

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Performance evaluation on the separation device activated by shape memory alloy actuator (형상기억합금을 이용한 소형 위성용 분리장치의 성능평가)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.635-640
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator. Based on previous research, we try to increase the reliability of the proposed device by changing some components. It enables the proposed device to activate under high preload. Also, we confirm it generates low shock which is main advantage of non-explosive separation device. Finally, vibration test which mimics launching environment and thermal vacuum test which mimics space environment are carried out respectively. After each environment test, we confirm the proposed device is successfully activated. Conclusively, we develop a non-explosive separation device which can activate with low shock under high preload after shock and environment tests(vibration and thermal vacuum tests).

Numerical modeling of impulse wave (수면 충격파의 수치모의)

  • Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.44-44
    • /
    • 2015
  • 저수지나 하천 사면에서 발생하는 산사태와 토석류는 저수지와 하천 수체에 충격을 가한다. 이로 인해 발생하는 수면 충격파는 전파되어 반대편 제방으로 파의 처오름 또는 댐 제체위로의 물넘이로 큰 피해를 줄 수 있다. 최근 외국에서는 2차원 충격파 생성 및 전파의 기본 과정을 구명하기 위한 실험적 연구가 이뤄지고 있으며, 이들 연구들은 충격파의 발생과 전파, 사면활동 물질과 수체의 상호작용 그리고 자유 수면과 유속분표의 발달에 대한 자세한 관측 자료를 제시하고 있다. 아울러 충격파에 영향을 주는 지배 매개변수를 제시하고 있다. 하지만, 이러한 실험적 연구의 최근 진보에도 불구하고, 이들 지배 매개변수를 고려한 충격파 지배공식들은 대상 지역의 복잡한 바닥 지형이나, 평면적 지형 변화를 단순한 추정치로만 고려하게 된다. 따라서 복잡한 지형조건에서 토석류와 수체의 상호작용과 수면 충격파의 전파를 합리적으로 해석하는 데는 한계가 있다. 이 경우 수치모델링 기법을 대안으로 적용할 수 있으나, 수치모델링은 수면에서 충격파의 전파와 수중에서 토석류의 전파를 동시에 모의해야 하고, 뉴턴 유체와 비뉴턴 유체의 특성을 동시에 고려해야하므로 수치해석 연구자들에게는 하나의 큰 도전사항이다. 이 연구는 경계면 포착기법을 이용한 계산유체동력학 기법을 이용하여 사면활동과 이로 인한 정지 수역에서의 충격파의 발생 및 전파를 재현하기 위한 수치 모델링 기법을 개발하는 것이 목적이다. 사면활동과 수면의 경계면을 포착하고 위치를 정립하기 위해서 VOF (volume of fluid) 경계면 재구축 기법을 이용한다. 지배 방정식은 비압축성(incompressible) 질량 보존방정식과 나비어-스톡스(Navier-Stokes) 방정식이며, 서로 다른 유체의 상(phase)애 대한 체적분할이송방정식을 이용한다. 큰와 모의 계열의 난류 모델링 기법을 적용하여 충격파의 전파와 붕괴에 대한 난류의 영향을 고려하였다. 토석류는 비뉴턴 흐름저항 관계식을 적용하여 그 흐름특성을 재현하였다. 이들 지배방정식은 2차 정확도의 유한체적법(finite volume method)을 이용하여 해석한다. 외국의 연구자들이 관측하여 제시한 길이 11 m 그리고 폭 0.5 m의 수로에서 발생한 충격파를 수치적으로 재현하여 개발된 모형의 실제 문제에 대한 적용성을 보여준다.

  • PDF

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.

Impact toughness improvement of an undercarriage track shoe using the Taguchi orthogonal array experiment (다구찌 직교배열 실험을 이용한 무한궤도용 트랙 슈의 충격인성 향상 연구)

  • Kim, Young Suk;Chang, Keun Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1611-1619
    • /
    • 2015
  • This study examined the toughness improvement of a track shoe used as the undercarriage of excavator and bulldozer parts. The excavator is operated under poor conditions, such as the build-up field and quarry. Therefore, the track shoe requires high strength and impact toughness to endure immense shock while at work. The track shoe was made of heat treated boron steel. The sufficient possibility of hardenability with the theoretical Jominy curve for boron steel was confirmed while quenching. The Taguchi orthogonal array experiment method was used to optimize the process variables, such as area reduction ratio and heat treatment conditions (tempering temperature and holding time), to achieve toughness improvement. The toughness of the track shoe increased with increasing area reduction, and a tempering temperature of $210^{\circ}C$ and a tempering time of 80 min are beneficial for improving the toughness of the track shoe.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Investigation of Impact Detection Characteristics of Piezoelectric Paint According to Boundary Conditions (구조물의 경계조건에 따른 압전 페인트 센서의 충격검출 특성 평가)

  • Park, Seung-Bok;Han, Dae-Hyun;Kang, Lae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1335-1343
    • /
    • 2014
  • Piezoelectric paint can be used to monitor vibrations or impacts occurring in large engineering structures such as ships and airplanes. This study investigated the impact detection characteristics of a piezoelectric paint sensor and possible errors in detecting impacts according to boundary conditions. The piezoelectric paint sensor used in this study was coated on an aluminum plate with four different electrode areas. After the occurrence of the poling process, the output voltages from the paint sensors were obtained when impact occurred in a certain sensor region. The experimental results revealed a large difference in magnitudes between the sensor signal in the impact region and those in the other regions, and this relation was maintained regardless of the changes in the boundary conditions.