• Title/Summary/Keyword: 충격 시험법

Search Result 174, Processing Time 0.028 seconds

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

Design and Dynamic Response Analysis of Smart UAV Console System (스마트무인기 콘솔의 설계 및 진동.충격해석)

  • Kwon, Gi-Han;Kim, Joong-Wook;Yoon, Hong-Woo;Park, Hyung-Gun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.87-92
    • /
    • 2005
  • This paper presents a design concept of smart UAV console system and the analysis of its dynamic response to shock and vibration. The console system design is determined by two main elements; the shape design and the mechanical design. The shape design refers to the human engineering aspects according to the military standards for ship borne equipment. The goal of the mechanical design is to provide the required shock and vibration endurance. The endurance of the system is numerically verified by means of Finite Element Method. The results of verification show that six resilient mounts installed on the console allow to sufficiently decrease the influence of the input impact wave on endurance of the system.

A Comparative Study on the Static and Dynamic Stiffness Evaluation Methods of Machine Tool Structure (공작기계 구조물의 정ㆍ동강성 평가방법에 관한 연구)

  • 최영휴;강영진;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.46-50
    • /
    • 2002
  • In other to evaluate the static and dynamic stiffness of machine tool structure, the accuracy and error from experimental methods are studied in this paper. The F.E.M., impulse tests and exciter tests are performed for the general simple structure whose exact solution can be obtained. So that the parameter and dynamic compliance can be got. From the result, the variation of natural frequency can be verified from the static preload. Further more the relationship of identify and difference for compliance and direction is presented in the exciting direction and measurement direction.

  • PDF

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

Utilization of LFWD for Compaction Management of Embankment in Expressway Construction (고속도로 건설 시 성토부 다짐관리를 위한 LFWD의 활용성)

  • Park, Yangheum;Jang, Ilyoung;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2021
  • The evaluation of the degree of compaction of the embankment area, which accounts for most of highway earthworks, is generally performed by a flat plate loading test. The plate loading test is a traditional test method and has high reliability in the field. However, as reaction force equipment must be carried out and it takes about 40 minutes per site during the test, there may be limitations in managing the entire expanse of earthworks. Meanwhile, in order to overcome this, the Ministry of Land, Infrastructure and Transport proposed a simple method of evaluating the level of compactness in the provisional guidelines for compaction management of the packaging infrastructure in 2010. However, it has not been utilized at the highway construction site until now, 10 years later. Therefore, this study attempted to verify the utility of the compaction evaluation method using LFWD (Light Falling Weight Deflectometer) of the impact loading method among the test methods suggested in the provisional guideline. To this end, the correlation was derived by conducting a plate loading test and an LFWD test for each site property and compaction degree. As a result of the test, there was no consistency of test data in the ground with a relative compaction of 80% or less. However, it was confirmed that the correlation has a tendency to increase beyond that. If the test method or test equipment is improved to ensure the consistency of the test values of the impact loading method in the future, it will play a big role in solving the blind spot for compaction management in the earthworks.

Lateral Crush Strength of Nuclear Fuel Spacer Grid Considering Weld Properties (용접물성치를 고려한 핵연료 지지격자체 횡방향 충격강도)

  • Song, Kee Nam;Lee, Sang Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1663-1668
    • /
    • 2012
  • A spacer grid, which is one of the structural components in a PWR fuel, is an interconnected array of slotted grid straps that are welded at the intersections to form an egg-crate structure. The spacer grid is required to have sufficient lateral crush strength to enable nuclear reactor shut-down during abnormal operating environments. Previous studies on the lateral crush strength analysis of the spacer grid were performed using only the base material properties. In this study, to investigate the effect of the lateral crush strength of the spacer grid when using the mechanical properties in the weld zone instead of the base material properties, lateral crush strength analysis by considering the mechanical properties in the weld zone as obtained from the instrumented indentation technique was performed, and the results were compared with those of previous studies.

Thickness Measurements of the Base Concrete by the Impact-Resonance Test (탄성파 충격공지법에 의한 기초 콘크리트의 두께 측정)

  • 김영환;이세경;김호철
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.121-128
    • /
    • 1991
  • Thicknesses of the hase concrete blocks supportmg large machmes were estimated by analyzing the res- 0 ¬nance modes of mechanical Vibrations The vibration was produced by the mechanical impact with steel ball drop and detected by a wideband comcal piezoelectric transducei. The detected signals were analyzed by FFT and thicknesses of specimen were determined by the resonant frequency of vibratIon. For the layered concrete block, the estimated thickness is dependent on the acoustic reflective index at the boundary between layers. The estimated thickness up to 100em were in goo:l agreement with the real value. In additlOn. this technique could be applicable to the estimation of the bondmg status of the layered structures.

스용차용 알루미늄휠의 구조해석

  • 노병욱;배서인;김득규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.822-825
    • /
    • 1995
  • Linear elastic stress analysis of aluminum wheel was studied using ANSYS and Unigraphics. The load condition of wheel impact test was replaced whit static force using energy valance concept. And the results were compared with strain gaga test. The test results were good agreement with analysis results.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : I. Numerical Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파병행기법 : I. 수치해석적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.257-270
    • /
    • 2002
  • The Impact-Echo(IE) method has been used to evaluate the integrity of concrete structures. In this method, the P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects. In many field applications of the IE method, the P-wave velocity is obtained by testing the core or the portion of a structure where the exact thickness is known. Occasionally, however, the core can not be obtained in specific structures and the P-wave velocity determined from core testing may not be a representative value of the structure. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. Results obtained from numerical studies are presented in this paper (Part I), and results obtained from experimental studies are presented in the companion paper (Part II). In this paper, numerical analyses using ABAQUS were carried out to investigate the effectiveness and the limitations of the IE-SASW method.