• Title/Summary/Keyword: 충격 손상

Search Result 513, Processing Time 0.024 seconds

원자력발전소 주증기 차단밸브스템 손상의 피로해석

  • 정대율;이우방;최원필
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.359-364
    • /
    • 1996
  • '93.4월에 고리원자력 4호기 운전중(원자로 출력 100%, 발전기 출력 975MWe) 주증기 차단밸브 (MSIV)의 닫힘으로 인해 발전소가 정지되었다. 밸브분해 점검결과 밸브스템이 Back Seat Ring 조립부위 Notch 부위에서 Steam Flow와 평행한 방향으로 절단되어, 밸브스템의 손상원인을 규명하기 위한 본 연구에서는 피로해석절차도에 따라 S-N 곡선에 근거하여 피로해석을 수행하였다. 피로해석결과 밸브스템의 초기균열 생성원인은 Stem Notch 부위의 제작결함과 발전소 정지시 밸브를 급속히 닫을 때 작용하는 충격하중등에 의해 발생된 것으로 추정되며 인장평균응력과 관내 유체의 진동하중의 변동응력이 조합하여 피로균열을 가속시켜 파손을 일으킨 것으로 사교된다.

  • PDF

Low Velocity Impact Monitoring for a Composite Sandwich Beam Using Piezo Thin Film Sensors (압전필름센서를 이용한 복합재 샌드위치 보의 저속충격 모니터링)

  • Park, Chan Ik;Lee, Gwan Ho;Kim, In Geol;Lee, Yeong Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • The piezoelectric thin film(PVDF: polyvinylidene fluoride) sensors having good dynamic sensing charachteristics can be used to monitor low vwlocit impact on composite structures. The impact response function for composite sandwich beam was derved. The impact tests at low energy without inducing damage were performed on the instrumented drop weight impact tester. The measured signals of PVDF sensors attached on the surface of the beam agreed well with the simulated signals. And the inverse technique was applied to reconstruct the impact forces from the PVDF sensor signals. Most of reconstructed impact forces showed good agreement with the measured forces. The comparison results showed that the piezoelectric thin film sensor can be used to monitor the low velocity impact on composite sandwich structures.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

Study on The Shock Damage Evaluation of TFT-LCD module for Mobile IT Devices (휴대용 IT 기기의 디스플레이 내충격 설계를 위한 손상평가 연구)

  • Kim B.S.;Lee D.J.;Koo J.C.;Choi J.B.;Kim Y.J.;Chu Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.489-493
    • /
    • 2005
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact testredesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

  • PDF

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Crashworthy Safety Assessment of High Speed Passenger Ship with Underwater Floating Matter (쾌속여객선의 수중부유물과의 내충돌 안전성 평가)

  • Lee, Sang-Gab;Lee, Jae-Seok;Baek, Yun-Hwa;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.30-31
    • /
    • 2009
  • Through the full scale ship collision response analysis of high speed passenger ship with underwater floating matters, the objective of this study is to perform the crashworthy safety assessment of its hull and passengers. For this safety assessment, diverse collision scenarios could be established through the thorough understanding of damage mechanisms due to the collision of its hydrofoil system with underwater floating matter examining the damage informations of its hull and passengers from the collision accidents, and through the estimation of the damages of its hull and passenger. The next step, crashworthy safety assessment of its hull and passengers, was carried out by the collision response analyses of high speed passenger ship with underwater floating matter using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code in consideration of surrounding water, and using local zooming analysis technique.

  • PDF

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

Damage Analysis of Bow-Flare Structure (선수 플레어 구조손상 해석)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.