• Title/Summary/Keyword: 충격파 임피던스

Search Result 10, Processing Time 0.027 seconds

Shock Compression of Metal using High Energy Laser and Innovative Applications (고 에너지를 이용한 충격파 발생과 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.353-357
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

Numerical Investigation for Multi-layer Shock Absorber to Improve Survivability of Fuze at High Impact (고충격에 신관의 생존성을 향상시키기 위한 다층 충격완충장치 전산해석 연구)

  • Soh, Kyoung Jae;Kim, Minkyum;Lee, Daehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2020
  • This study proposes a method of constructing an effective shock absorber. The existing shock absorber is fabricated only with polyethylene; however, the new shock absorber comprises polyethylene on the outside and a high-density material on the inside. The shock was mostly reduced when the density difference between the inner and outer materials was large. Aluminum, titanium, and copper were chosen as the outer structure of two-layer. Shock reduction was most effective in copper with the highest density, and the maximum deceleration was reduced by 43% while the impulse was reduced by 51% in the proposed shock absorber than the traditional shock absorber. In the cases of four-layer and six-layer shock absorbers, the impulse was reduced, but the maximum deceleration was increased. The fuze must survive from the biggest shock and the remaining shock waves should not exceed the threshold. Thus, a two-layer structure shock absorber using polyethylene-copper was proposed.

Shock Compresssion and Microparticles Acceleration using High Power Laser (고 출력 레이저 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1916-1919
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR (VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구)

  • Yu, Hyeonju;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.80-87
    • /
    • 2017
  • The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.

A Study on Shock-induced Detonation in Gap Test (충격 전달에 의한 Gap Test의 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Park, Jungsu;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2016
  • A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. Despite of its common use, numerical study of such pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a Eulerian level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the gap test are quantitatively investigated.

Laser Supported Combustion Waves and Plasma Flows (고에너지펄스를 이용한 충격파 발생과 응용)

  • ;Choi, Ji-Hae;Gwak, Min-Cheol;Yoh, Jai-Ick
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.27-30
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave is generated from a localized spot of high intensity energy source. The resulting reactive shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is generating reactive shock wave and high strain rate deforming of thin metal foil for accelerating micro-particles to a very high speed on the orders of several thousand meter per second. Somce innovative applications of this device will be discussed.

  • PDF

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

A Study on the Improvement of Voltage Measuring Method of 22.9 kV-y Distribution Lines (22.9 kV-y 배전선로의 전압계측방법 개선에 관한 연구)

  • Kil, Gyung-Suk;Song, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-299
    • /
    • 1998
  • An objective of this study is to develop a voltage measuring device that uses a gas-filled switch (GS) on 22.9 kV-y extra-high voltage distribution lines. The voltage measuring device proposed in this paper is a kind of capacitive divider which consists of a detecting electrode attached outside of the bushing of GS, an impedance matching circuit, and a voltage buffer. It can be easily installed in an established GS without changing the structure. For the calibration and application investigations, the voltage measuring device was set up in the 25.8 kV 400 A GS, and a step pulse generator having 5 ns rise time is used. As a result, it was found that the frequency bandwidth of the voltage measuring device ranges from 1.35 Hz to about 13 MHz. The error of voltage dividing ratio which is evaluated by the commercial frequency voltage of 60 Hz was less than 0.2%. In addition, voltage dividing ratio in the commercial frequency voltage and in a non-oscillating impulse voltage were compared, and their deviation were less than 0.7%.

  • PDF