• Title/Summary/Keyword: 충격파 안정성

Search Result 43, Processing Time 0.025 seconds

The Study of Aerodynamic Heating Characteristics for the Design of Nose Shapes of Space Launcher (발사체 선두부의 공력가열현상 특성연구)

  • Choi, Won;Kim, Kyu-Hong;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.14-20
    • /
    • 2002
  • The aerodynamic heating at a nose cone is predicted under the KSR-III flight conditions. An equilibrium reacting gas condition is applied. The parametric study is performed with Mach number of 4.9, 10.2 and 15 and for the following nose shapes of hemisphere, cut cylinder and parabola. AUSMPW+ and shock aligned grid technique are used to provide the best aerodynamic solutions. In addition, the composite material of a nose cone is discussed in the viewpoint of a thermal safety.

Quality Management Platform of Ocher Concrete Using Nondestructive Tests Based on the Stress Waves (응력파기반 비파괴검사법을 이용한 황토콘크리트 품질관리 플랫폼)

  • Hong, Seong-Uk;Kim, Seung-Hun;Kim, Seong-Yeob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.120-127
    • /
    • 2016
  • Several problems including respiratory and skin disorders due to the problems for sick house syndrome have occurred, there appears echo friendly materials to solve the problems. The research is lacking in quality management techniques ocher concrete using nondestructive tests. In this research, the experimental works were conducted to study the initial quality control for the compressive strength of Ocher concrete(21 MPa). The purpose of this study is the implementation platform for quality management of ocher concrete using nondestructive tests. It uses the relationship between the compressive strength and ultrasonic pulse velocity of the ocher concrete to estimate the compressive strength of the ocher concrete. And using the impact echo method to estimate the thickness of the ocher concrete. The platform is based on a Java script, so that the user can obtain the data through the platform.

Input Power Normalization of Zero-Error Probability based Algorithms (영오차 확률 기반 알고리즘의 입력 정력 정규화)

  • Kim, Chong-il;Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The maximum zero error probability (MZEP) algorithm outperforms MSE (mean squared error)-based algorithms in impulsive noise environment. The magnitude controlled input (MCI) which is inherent in that algorithm is known to plays the role in keeping the algorithm undisturbed from impulsive noise. In this paper, a new approach to normalize the step size of the MZEP with average power of the MCI is proposed. In the simulation under impulsive noise with the impulse incident rate of 0.03, the performance enhancement in steady state MSE of the proposed algorithm, compared to the MZEP, is shown to be by about 2 dB.

Installation of Sound Barrier to Prevent Damage to Structures Caused by Artillery Fire Impact Sound (포 사격 충격음의 구조물 손상 방지를 위한 방음벽 설치 방안)

  • Park, June;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • During artillery fire, an excessive level of impulse noise propagating in the form of a storm wave is generated. Since the sound of impact from the fire affects the stability of the surrounding structures, the artillery and the structures must be separated from each other by the proper distance to avoid damages from friendly fire. However, if they have already been built within the distance, it is possible to prevent the damages by building sound barriers between them. In this study, the proper separation distance between the artillery and the structure was calculated, and the insertion losses due to various heights and shapes of the sound barrier were simulated by using the BEM(Boundary Element Method), and conclusively the optimal sound barrier was selected.

비정상 압축성 이젝터-디퓨저 유동에 대한 수치해석적 연구

  • 이영기;최보규;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.17-17
    • /
    • 2000
  • 이젝터-디퓨저 시스템은 고압의 기체를 노즐로 팽창시켜서 얻은 대량의 운동에너지를 이용하여 낮은 에너지를 가지는 주변의 기체를 외부로 배출시키는데 이용되는 유체 역학적 펌프이다. 이젝터-디퓨저 시스템은 작동부가 없고 구조가 단순하여 설치/보수 및 시스템 전체의 경량화에 많은 이점이 있으므로 그 활용도가 증대하고 있는 추세이다. 그러나 이젝터-디퓨저를 지나는 초음속 유동은 복잡한 충격파 및 난류현상들로 인하여 그 물리적 특성들이 명확히 알려지지 않았다. 특히 이러한 제현상들의 간섭과 전단층의 불안정성 때문에 발생하는 비정상성은 1차 유동과 2차 유동의 혼합작용에 영향을 미쳐, 결국 시스템 전체의 배기성능을 저하시킬 뿐만 아니라, 소음과 진동을 발생시켜 시스템의 안정적인 운전을 방해한다.

  • PDF

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry (탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링)

  • In Seok Joung;AHyun Cho;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.144-153
    • /
    • 2024
  • Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

Effect of Shock Waves on Dynamic Stability of Transonic Missiles (천음속 미사일의 동안정성에 대한 충격파 영향)

  • Park, Su-Hyeong;Gwon, Jang-Hyeok;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.12-20
    • /
    • 2002
  • Three dimentional unsteady Euler equations are solved and an integration method is presented to predict the dynamic stability derivatives of transonic missiles. Results for the Basic Finner model are compared with several experimental data to vaildate the prediction capability of the present method. The variations of dynamic stability derivatives are discussed with respect to angle of attack, Mach number, and rotation rate. Results show that shock waves between fins enhance the pitch-damping characteristics in transonic region. Results also imply that the Euler equations can give the damping coefficients with comparable accuracy.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

Performance Analysis for Various Flight Conditions with Air Disturbance (대기외란을 적용한 램제트 엔진의 비행 조건별 성능 연구)

  • Seo, Bong-Gyun;Choi, Jae-Hyung;Sung, Hong-Gye;Park, Jung-Woo;Park, Ik-Soo;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.588-593
    • /
    • 2011
  • In this study, the performance analysis method for ramjet engine system with atmospheric air disturbance was proposed. Flight path was determined to satisfy dynamic pressure constant at each flight altitude. The atmospheric air disturbance incoming into a engine intake was simulated by the model Tank proposed. The performance parameters was investigated at each flight condition with air disturbance. Engine operation stability was evaluated as analysis of the normal shock position.

  • PDF

Control of the Pressure Oscillations in Supersonic Cavity Flows (초음속 공동유동에서 발생하는 압력변동의 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The present study describes unsteady flow phenomena generated in a supersonic flow passing over a rectangular cavity and suggests a way of control of pressure oscillation, doing harm to overall performance and stable operation of aerodynamic and industrial applications. The three-dimensional, unsteady, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme and large eddy simulation. The cavity flow are simulated with and without control methods, including a triangular bump and blowing jet installed near the leading edge of the cavity. The results show that the pressure oscillation is attenuated by both control techniques, especially near the trailing edge of cavity.

  • PDF