• 제목/요약/키워드: 충격성소음

검색결과 16건 처리시간 0.038초

터널발파작업에 따른 방음시설의 설치시기와 방법에 대한 고찰 (A Study on the Installation Time and Method of Soundproofing Facilities According to Tunnel Blasting Work)

  • 원연호;손영복;정재형
    • 화약ㆍ발파
    • /
    • 제25권1호
    • /
    • pp.1-14
    • /
    • 2007
  • 발파작업에 따라 필연적으로 발생되는 발파소음은 충격성소음으로 인체에 영향을 미친다. 이로 인한 민원 발생은 공사 중지, 발파규모의 축소 등을 유발시킨다. 발파소음저감을 위한 방음시설은 대부분 민원의 정토에 따리 설치시기나 설치방법 등이 각 현장마다 자체적으로 이루어지고 있으나 소음 저감도는 매우 낮은 실정이다. 본 연구의 최종적인 목표는 방음시설의 방법과 재질에 따른 소음저감 기술연구이다. 1단계 기포자료 확보를 위한 연구단계로서 철도, 도로, 전력구 등의 약 20여개의 터널 현장을 대강으로 방음시설의 설치시기와 설치방법, 재질에 대한 조사를 수행하였다.

수직평판에 충돌하는 펄스파에 관한 실험적/수치해석적 연구 (Experimental and Computational Studies of the Pulse Wave Impinging upon a Vertical Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.285-291
    • /
    • 2001
  • The impingement of a weak shock wane discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was varied in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구 (The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

펄스파 강도증가를 위한 피동제어 (Passive Control for the Augmentation of a Pulse Wave)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.241-248
    • /
    • 2001
  • The present paper describes experimental and computational work to augment the magnitude of the impulsive wave. An experiment was performed using a simple shock tube with an open end and numerical calculations were carried out to solve the unsteady, axisymmetric, inviscid, compressible governing equations. The control strategy applied was to alter the exit geometry of a straight tube to a sudden enlargement tube and a flare tube. The effects of the configurations of the tube exit on the magnitude of the impulsive wave were investigated over the range of the weak shock Mach number from 1.01 to 1.10. The results obtained were compared to those of the straight tube tests. The numerical result predicted the magnitude of the experimented impulsive waves with a good accuracy. The present passive control technique enabled the magnitude of the impulsive wave to augment by about 23 percent, compared to that of the straight tube of no control.

  • PDF

다공관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube)

  • 이동훈
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

고속철도 터널출구에서 발생하는 충격성 소음의 저감을 위한 실험적 연구 (Experimental study on reduction of impulsive noise generating at exit of high-speed railway tunnel)

  • 김희동;뢰호구준명
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2375-2385
    • /
    • 1996
  • As a compression wave is emitted from a duct, an impulsive wave generates and causes an impulsive noise that is at present a serious environmental noise pollution. In order to clarify the acoustic characteristics of the noise and to reduce their pressure levels, a series of model experiments were conducted on the impulsive waves emitted from an open end of a shock tube. The impulsive waves with various intensities were obtained by controlling the operation pressure ratio of the shock tube. Various kinds of silencers such as the exit boxes with baffle plates, were applied to the duct exit to reduce the impulsive noises. The effects of geometry of silencers and shock Mach number on the noise reduction were clarified. From the measurements of sound pressure level, it was found that installing the baffle plate into the exit box is effective in lowering the noise level at far fields, and that the recommendable geometries of silencer are L/D=1, H/D=1 and H/D=0.75.

직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구 (Numerical study on attenuation and distortion of compression wave propagation into a straight tube)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.

급축소관을 전파하는 압축파에 관한 이론적 연구 (Theoretical study on compression wave propagating in a sudden reduction duct)

  • 김희동;김태호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

다공벽을 전파하는 압축파에 관한 수치해석적 연구 (Numerical Study of Compression Waves Propagating Through Porous Walls)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1403-1412
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates through the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study calculated the effect of porous walls on the compression wave propagating into a model tunnel. Two-dimensional unsteady compressible equations were differenced by using a Piecewise Linear Method. Calculation results show that the cavity/porous wall system is very effective for a compression wave with a large nonlinear effect. The porosity of 30% is most effective for the reduction of the maximum pressure gradient of the compression wave front. The present calculation results are in a good agreement with experimental ones obtained previously.