• Title/Summary/Keyword: 충격부하

Search Result 70, Processing Time 0.027 seconds

Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running (남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.379-386
    • /
    • 2009
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate the influence of midsole hardness on vertical ground force and heel strike angle during men's and women's running. Five male and five female expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. In conclusion, regardless of gender, there was ill significant difference among three shoes in maximum vertical ground reaction force, impact force peak and stance time. However, the loading time decreased and the loading rate increased as the midsole became harder. Female subjects showed more sensitive reaction with respect to the midsole hardness, while male subjects showed subtle difference. The authors expect to apply this results for providing a guideline for utilizing proper midsole hardness of gender-specific shoe.

Optimization of Operating Conditions for Each Linked Treatment Scenario using Sewage Treatment Modeling (하수처리 모델링을 이용한 연계처리 시나리오별 운전조건 최적화)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Due to rapid industrial development, population growth, and improvement of living standards, the amount of sewage and wastewater, including nutrients, is increasing every year. In addition to the increasing amount of sewage and wastewater generation, untreated linked treated water (manure, livestock manure, industrial wastewater, leachate, food waste) is also increasing, and many of the linked treated water flows directly into nearby sewage treatment plants. The associated treated water causes many problems because of its own characteristics, low flow rate with high concentration compared to existing inflow sewage. In order to solve this problem, it is necessary to investigate the quantity and quality of the connected treated water whichh is flowed into the sewage treatment plant, and a study the effect on sewage treatment. Therefore, in this paper, we would like to examine the effect of the linked treated water. Seasonal effect associated with water pollution conditions was considered. In addition, a scenario was created through the distribution and inflow of connected treated water along with the water temperature conditions. Through scenario analysis, we intend to optimize the operating conditions of linked processing.

Indirect Load Identification for the Operational Load Analysis (동작중 작용부하 분석을 위한 간접적 부하규명)

  • Cho M. S.
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.501-507
    • /
    • 2003
  • Medical devices for helping the rehabilitation of the patients such as orthoses and prostheses should be designed to be strong enough. For the strength design, operational load should be identified first. Furthermore. medical devices are susceptible to dynamic load or shock frequently due to its characteristics. These type of the load may be identified by installing the sensors directly. However, it can modify the natural properties of the structures. Therefore, operational load should be identified indirectly from the system characteristics and responses such as vibrations. In this paper, the basic formulation of the indirect load identification is reviewed and the problems of conventional approach are checked. Then, the new approach based upon the principal component analysis is proposed and the validity of the proposed method is demonstrated using experiments.

Influence of Filtrate Quality by Variation of Operating Filter Number Based on Inflow (유입유량과 연계한 여과지 가동지수 변동 운영이 여과수 수질에 미치는 영향)

  • Kim, Jin-Keun;Lee, Jung-Tack
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.817-824
    • /
    • 2009
  • To prevent turbidity breakthrough in a depth filter caused by hydraulic shock loads, influence of turbidity and particle number in filtrate by variation of operating filter number depending on inflow change was investigated. Inflow quantity at the S water treatment plant (WTP) was varied and ratio of maximum/minimum inflow quantity was 2.2, therefore filtration velocity was also subsequently changed. The S WTP changed operating filter number depending on inflow variation to minimize change of filtration velocity. Particle breakthrough was not severe when operation system was changed, out-of-operation and re-start of filter was repeated depending on inflow quantity. Slight particle breakthrough was noticed when re-start of filter was implemented at the filter that had a cumulative filtration run time of less than 10 h or more than 50 h. This can be attributed to the inadequate ripening and over accumulation of particles on media. Therefore, it is more efficient to choose a re-starting filter basin which has cumulative filtration run time more than 10 h or less than 50 h to reduce particle breakthrough. Filter number variation depending on inflow change was proven to be a method for improvement of unit filter run volume (UFRV).

Analysis of relationship between daily inflow rate fluctuation and surface wave transfer velocity in water treatment processes (일 유입유량 변동과 공정내 표면파 전파속도 상관성 분석)

  • Park, No-Suk;Lim, Seong-Eun;Kim, Seong-Su;Hwang, Jun-Sik;Jung, Nahm-Chung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.239-243
    • /
    • 2008
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flow-rate from each process abruptly, and ultimately occur the detachment of the attached particles inside each unit process. Also, since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. Therefore this study was conducted to suggest the methodology for accurately predicting the travel time of surface wave occurred from the fluctuation of inlet flow to reach the latter process. Through the experiment, which was carried out for the full-scale water treatment plants(capacity : 2,000m3/d), it could be confirmed that the flow rate fluctuation from equalization tank produce the surface wave. And the wave transfer velocity is a function of the hydraulic radius and the length of each open type tanks which are comprised in the latter processes.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Fabrication and characterization of piezoelectric wide band energy harvesters using low frequency vibrations (저주파 진동을 이용한 압전 구동 방식의 광대역 에너지 수확 소자 연구)

  • Cho, Hyunok;Halim, Miah A.;Park, Jae Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1227-1228
    • /
    • 2015
  • 본 연구에서는 기계적 충격 방식을 통한 주파수 상향방식을 이용하여 저주파 진동원으로부터 충분한 에너지를 수확할 수 있는 압전 구동 방식의 광대역 에너지 수확 소자를 제작하고 평가하였다. 유연한 외팔보의 진동으로 인한 기계적 충격은 압전 외팔보에 큰 두 번째 힘을 전달한다. 변형률이 커지고 주파수 상향방식을 사용한 결과로 출력 전력과 동작 주파수의 대역폭 또한 향상되었다. 제작된 에너지 수확소자의 질량체 비율은 ${\mu}=5.8$, 스토퍼의 거리는 d = 0.5 mm이며, 17 Hz의 주파수, $30k{\Omega}$의 최적 부하저항에서 $449{\mu}W$의 최대 피크 전력을 전달하였다. 또한 1 g로 가진하였을 때 11 Hz부터 28 Hz의 주파수 대역에서 동작이 가능하였고, 저주파수의 무작위 진동에서도 효율적으로 에너지 수확이 가능하다는 것을 입증하였다.

  • PDF

The Removal of Toluene by a Granular Activated Carbon Bioreactor using Yeast (Yeast와 입상활성탄을 이용한 미생물반응기의 휘발성유기화합물 분해 특성)

  • NamGung, Hyeong-Kyu;Shin, Seung-Kyu;Ahmed, Zubair;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1218-1224
    • /
    • 2008
  • A liquid culture of yeast "Candida tropicalis" was used in a fluidized bioreactor to achieve high removal efficiencies of volatile organic compounds (VOCs). In this study, granular activated carbon (GAC) was used as a fluidized material to improve adsorptive capacity as well as mass transfer of gaseous toluene, the model VOC. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 80%, when inlet toluene loading varied in a range between 13.1 and 37.4 g/m$^3$-hr. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m$^3$-hr at a toluene loading of 291 g/m$^3$-hr. Transient loading experiments revealed that the removal efficiency was remained unchanged during an increased loading period, and toluene introduced to the bioreactor was first absorbed to GAC and then slowly desorbed and became available to the yeast culture. Hence the fluidized GAC helped to achieve an improved mass transfer between the gas and liquid phases, resulting in high toluene removal capacity. Consequently, the GAC fluidized bioreactor using C. tropicalis can be successfully applied for the removal of VOCs, and is a feasible alternative over conventional processes such as packed-bed biofilters.

A Study on the Construction of the Flexible Long-Term Generation Mix under Uncertainties of Power System (전력계통의 불확실성을 포함한 유연한 장기전원구성의 수립에 관한 연구)

  • 최재석;이순영;송길영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.64-80
    • /
    • 1994
  • 본 연구에서는 장기전원구성의 수립에 있어서 가정한 시나리오에서 최적해를 찾는 기존의 방법을 탈피하여 건설단가나 연료단가의 변동과 같은 경제성의 변동 및 최대부하의 예측의 불확실성에 대한 외부충격등에 견딜 수 있는 유연성을 정량적으로 고려할 수 있는 새로운 방법을 제안한다.그 수법으로 Fuzzy 동적계획법을 이용하여 각 대표년도별로 최적전원구성안을 결정하므로써 년도별 전원 구성의 추이를 쉽게 알 수 있고 비선형 멤버쉽함수도 용이하게 고려할 수 있도록 하였다. 여기서는 경제성, 신뢰성, 부하불확실성 및 유연성에 대한 멤버쉽 함수치를 각상태별로 계산하고 Bellman-Zadeh의 최대화 결전과정에 따라 처리하므로서 그 안을 결정하도록 하였다. 본 수법을 우리나라 KEPCO 계통에 적용하여 그 유용성을 검토하였다.

  • PDF

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF