• Title/Summary/Keyword: 충격감쇠

Search Result 157, Processing Time 0.021 seconds

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator (파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.

Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures (천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석)

  • Jeon, Min-Jun;Ju, Bo-Geun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.205-213
    • /
    • 2019
  • In the Pohang Earthquake in 2017, considerable damage to non-structural elements, such as ceiling systems, exterior finishes, and curtain walls, was reported; thus, the seismic designs of non-structural elements are important. In this study, the modal characteristics of a ceiling system were investigated through the impact hammer test. The frequency and damping ratio according to the length of the hanger bolt were identified. In addition, collision experiments were conducted to obtain the impact duration for exactly considering the impact effects of the ceiling against a wall or other adjacent elements. Based on the identified dynamics and impact duration of the ceiling system, the seismic responses of the ceiling system were obtained numerically in case of collision. Numerical simulation results show that the impact load tends to increase with the clearance between the ceiling and adjacent elements, and is not correlated with the length of the hanger bolt.

Experimental Determination of Complex Moduli and Internal Damping of Laminated Composites (적층 복합재료의 내부감쇠와 복소탄성계수 측정에 관한 연구)

  • Lee, Jae-Hyeok;Park, Se-Man;Kim, Hyeong-Sam
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.905-911
    • /
    • 1998
  • Damping is a property for materials and systems to dissipate energy during periodic deformations. Generally, damping causes stiff decrease in amplitudes and shifts in phases. Also, even at resonance, amplitudes are substantially attenuated. This phenomenon of damping helps in reducing stresses developed during vibrations and consequently improves fatigue lives of materials. In this work internal damping and complex moduli are experimentally determined. An impulse technique is utilized in experiments and cantilever beams are selected as test subjects for the measurements of flextural vibrations since the beams lend themselves easily as simplistic ideal models. A resonance method is employed to determine resonance frequencies which are utilized to compute storage moduli. Also, loss moduli are evaluated from damping capacities and storage moduli. The storage and loss moduli combined yield complex moduli. Finally internal damping is evaluated from bandwidth technique, the real component of the transfer function.

  • PDF

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.

Development of Impact Factor Response Spectrum based on Frequency Response of Both Ends-Fixed Beam for Application to Continuous Bridges (연속교 적용을 위한 양단고정지지 보의 진동수 기반 충격계수 응답스펙트럼 개발)

  • Roh, Hwasung;Lee, Huseok;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.301-306
    • /
    • 2016
  • In bridge performance assessments, a new load carrying capacity evaluation model of simple bridges was proposed, which is based on the developed simple support impact factor spectrum. In this paper, a conservative assumption that the inner span with the both ends fixed boundary condition is ideal for applying the impact factor response spectrum for continuous bridges. The impact factor response spectrum has been proposed based on this assumption. The response spectrum by comparing the numerical analysis result and actual measurement data verified the applicability. The analysis was loading the moving load of DB-24 in a six-span continuous bridge, which was the same as the actual measurement data, the dynamic response was measured in the fourth span. The frequency of the bridge was obtained by FFT on the acceleration response and the span-frequency of sample bridge was calculated by the frequency. The impact factor of the sample bridge was determined by applying the span-frequency of the bridge to the proposed response spectrum; it was similar to the result of comparing the actual measured impact factor. Therefore, the method using the impact factor response spectrum based on the frequency response of both ends-fixed beam was found to be applicable to an actual continuous bridge.

Evaluation of Impact Factor in Composite Cable-Stayed Bridges under Reliability-based Live Load Model (신뢰도 기반 활하중모델에 의한 강합성 사장교의 충격계수 평가)

  • Park, Jae Bong;Park, Yong Myung;Kim, Dong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2013
  • AASHTO LRFD and Korean Bridge Design Code (Limit State Design) specify to consider Truck and Lane load simultaneously determined from reliability-based live load model, and impact shall be applied to the truck load while it shall not be applied to the lane load. In this paper, vehicle-bridge interaction analysis under moving truck and lane loads were performed to estimate impact factor of the cables and girders for the selected multi-cable-stayed composite bridges with 230m, 400m and 540m main span. A 6-d.o.f. vehicle was used for truck load and a series of single-axle vehicles was applied to simulate equivalent lane load. The effect of damping ratio on the impact factor was estimated and then the essential parameters to impact factor, i.e., road surface roughness and vehicle speed were considered. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck load only in the vehicle-bridge interaction analysis. The impact factors evaluated from dynamic interaction analysis were also compared with those by the influence line method that is currently used in design practice to estimate impact factor in cable-stayed bridge.

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

Shock-Fitting in Kinematic Wave Modeling (운동파 이론의 충격파 처리기법)

  • Park, Mun-Hyeong;Choe, Seong-Uk;Heo, Jun-Haeng;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.185-195
    • /
    • 1999
  • The finite difference method and the method of characteristics are frequently used for the numerical analysis of kinematic wave model. Truncation errors cause the peak discharge dissipated in the solution from the finite difference method. The peak discharge is conserved in the solution from the finite difference method. The peak discharge is conserved in the solution from the method of characteristics, however, the shock may deteriorates the numerical solution. In this paper, distinctive features of each scheme are investigated for the numerical analysis of kinematic wave model, and applicability of shock fitting algorithm such as Propagating Shock Fitting and Approximated Shock Fitting methods are studied. Propagating Shock Fitting method appears to treat shock properly, however, it failed to fit the shock appropriately when applied to a sudden inflow change in a long river. Approximate Shock Sitting method, which uses finer elements, is found to be more proper shock-fitting than the Propagating Shock Fitting method. Comparisons are made between two solution from the kinematic wave theory with shock fitting and full dynamic wave theory, and the results are discussed.

  • PDF

Determination of Specimen Geometry for Identification of the Complex Modulus of Viscoelastic Materials (점탄성재료의 복소탄성계수 규명을 위한 시편 크기의 결정)

  • Kang, Kee-Ho;Sim, Song;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.133-138
    • /
    • 1991
  • 일반적으로 고무를 비롯한 점탄성재료는 형상 및 크기를 적절히 조절함으로 써 한 방향 이상으로의 원하는 스프링상수를 얻을 수 있으며, 금속에 비하여 내부 마찰에 의한 에너지 발산이 매우 크기 때문에 강제 진동시의 진폭저감 및 충격에 따른 자유진동의 감쇠에 널리 이용되고 있다. 이와 같은 진동감쇠 에 점탄성재료를 효과적으로 사용하기 위해서는 복소탄성계수 즉, 탄성계수 와 손실계수를 정확하게 알아내는 것이 필요하다. 점탄성재료의 복소탄성계 수는 주파수, 온도 및 변형률등에 따라 변하므로 이와 같은 사용조건의 함수 로 구해야 한다. 복소탄성계수를 실험적으로 구하는 방법은 여러가지가 있으 며 실험의 용이성과 관심대상에 따라 적절한 방법을 선택하게 된다. 본 연구 에서는 주파수변화에 따른 복소탄성계수를 임피던스법으로 집중질량 모형을 이용하여 구하려고 할 때, 실험데이타로부터 보다 정확한 결과를 얻기 위하 여 적절한 시편의 크기를 결정하는 방법을 제시하고자 한다. 이를 위해서 시 편내의 파동전달효과와 포아송비와 관련된 양단제한효과 그리고 정하중시 압축변형에 대한 시편의 좌굴등을 고려하여 이론적으로 해석하였으며 실험 적으로도 검증하였다.

  • PDF