• Title/Summary/Keyword: 출수기

Search Result 851, Processing Time 0.033 seconds

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Varietal and Locational Variation of Grain Quality Components of Rice Produced in Hilly and High Altitude Areas in Korea (중산간지와 고냉지산 쌀 형태 및 이화학적특성의 품종 및 산지간 변이)

  • Choi, Hae-Chune;Chi, Jeong-Hyun;Lee, Chong-Seob;Kim, Young-Bae;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.27-37
    • /
    • 1994
  • To catch the relative importance of varietal and environmental variation in various grain quality components associated with palatability of cooked rice, grain appearance, milling recovery, several physicochemical properties of milled rice and texture or eating quality of cooked rice for rice materials of five japonica cultivars, produced at four locations of the mid-mountainous and alpine area of Korea in 1989, were evaluated and analyzed the obtained data. Highly significant varietal and locational variations were detected in 1000-grain weight, amylose content, K/Mg ratio, gelatinization temperature, peak viscosity, breakdown and setback viscosities as compared with variety x location interaction variation. Also, marked locational variations were recongnized in milling recovery from rough to brwon rice, alkali digestibility and protein content, and significant varietal variation was caught in stickiness /hardness ratio of cooked rice. The variety x location interaction variation was especially large in quality components of grain appearance and ripening, palatability of cooked rice and consistency viscosity. One thousand kernel weight was heaviest in Jinbuolbyeo and Odaebyeo, and the unfilled grain ratio was lowest in Jinbuolbyeo. Odaebyeo showed slightly' lower ratio of intact and clear milled rice because of more chalky rice kernels compared with other cultivars. Amylose content of Jinbuolbyeo and Sobaegbyeo was about 1% lower than that of others and K/Mg ratio of Odaebyeo was the lowest one among rice materials. Odaebyeo, Sobaegbyeo and Jinbuolbyeo revealed significantly low gelatinization temperature and setback viscosity while high peak and breakdown viscosities. Cholwon rice showed the greatest kernel weight, good grain filling but lowest ratio of intact and clear milled rice while Jinbu rices exhibited the highest milling recovery from rough to brown rice and ratio of sound milled rice. Amylose content of milled rice in Jinbu rices was about 2-3% lower than those in other locations. Protein content of polished rice was about 1% lower in rice materials of middle zone than those of southern part of Korea. K/Mg ratio of milled rice was highest in Jinbu rice and potassium content was slightly higher in the rice materials of middle region than in those of southern region. Alkali digestion value and gelatinization temperature of polished rice was markedly high in Jinbu rices as compared with other locations. Breakdown viscosity was hightest in Chlown rices and next higher with the order of Hwaso>Unbong>Jinbu rices, and setback viscosity was the quite contrary tendency with breakdown. The stickiness /hardness ratio of cooked rice was relatively higher value in Cholwon rices than in the others and the palatability of cooked rice was a little better in Unbong and Cholwon rices than in Jinbu and Hwaso rices, although variety x location interaction variation was large. The rice materials can be classified largely into two groups of Jinbu and the others by the distribution on the plane of 1st and 2nd principal components (about 60% of total informations) contracted from twelve grain quality properties closely associated with eating quality of cooked rice. Also, Jinbu and the other rices were divided into two and three rice groups respectively. Varietal variation of overall rice quality was smallest in Hwaso. The most superior rice group in overall quality evaluation included Odaebyeo produced at Cholwon, Unbong and Hwaso, and Sobaegbyeo grown at Unbong

  • PDF

The Effects of Different Particle Sizes of Fused Phosphate on Paddy Rice (수도(水滔)에 대한 용성인비(熔成燐肥)의 입도별(粒度別) 비효에 관한 연구(硏究))

  • Uhm, Dae-Ick;So, Jae-Don;Chang, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.245-256
    • /
    • 1978
  • The effects of different particle size distribution of fused phosphate on the changes of phosphorus content in soil and plant, growth and yield of paddy rice were investigated through pot and field experiments. The following results were obtained. 1. Negative correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was larger than 28 mesh, and 65 to 150 mesh, and highly significant correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was 28 to 48 mesh. But no significant correlation was found betweeen unhulled rice yield and the composition of fused phosphate whose particle size was 48 to 65 mesh. Thus the composition of 56% of 28 to 48 mesh particles and 44% of 48 to 65 mesh particles would give the best effect. 2. In the soil of the Jeonbug series rice plant in the plots treated with fine single textured fused phosphate showed poor early growth, i.e. poor tillering and short plant height. But at harvesting stage it showed rather increased number of tillers and higher plant height. Of the composite fused phosphate the more particles of 28 to 48 mesh it had, the better growth it showed. In the soil of the Yesan series rice plant in the treated plots showed much better tillering and higher plant height in contrast with that in the control plots. Of the single textured fused phosphate the finer particles showed better growth, while of the composite fused phosphate the more particles finer than 48 mesh it had, the poorer the tillering. 3. The content of available phosphorus in the soil tended to increase as the particles of both single textured and composite phosphate became finer. The soil phosphorus content decreased as the content of phosphorus absorbed by rice plant increased at each stage of growth, and the amount of soil phophorus decreased became larger as the the particles were finer. The amount of available phosphorus in the treated soils was larger in the soil of the Yesan series than in the soil of the Jeonbug series which was a long cultivated soil and contained relatively high phosphorus. 4. In the single textured fused phosphate the amount of phosphorus absorbed by rice plant tended to increase as the particles were finer, and great difference was found at heading stage, but at harvesting stage little difference was found for all the plots. In the field experiment in the soil of the Jeonbug series more phosphorus was absorbed by rice plant in the plots treated with the composite fused phosphate of higher content of 28 to 48 mesh particles. In the pot experiment the amount of phosphorus absorbed by rice plant was highest in the plots treated with the composite fused phosphate of 53.35% of particles larger than 48 mesh and 46.6% of particles smaller than 48 mesh. In the pot experiment in the Yesan series the amount of absorbed phophorus was highest in the plots treated with the fused phosphate of 47.75% of particles larger than 48 mesh and 50. 216% of particles smaller than 48 mesh. 5. A reverse relationship was found between the absorbed phosphorus and silica. In the pot experiment in the soils of both the Jeonbug and Yesan series the amount of phosphorus absorbed by rice plant increased as the particles were finer, while the amount of absorbed silica tended to decrease.

  • PDF

Diagnosis of the Field-grown Rice Plant -II. Diagnosis by total plant analysis (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -II. 전분석(全分析)에 의(依)한 진단(診斷))

  • Park, Hoon;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.165-172
    • /
    • 1973
  • The optimum time for nutritional diagnosis of the field-grown rice plant by total plant analysis, and the relationship between maximum or minimum nutrient content at various growth stages and corresponding yield and between maximum or minimum yield and corresponding nutrient content were as follows. 1. The percentage occurence of the minimum nutrient content in straw or grain of minus nutrient plot was in the order of 20 days after transplanting (20)>maximum tillering (MT)>harvested straw (HS)> earformation (EF)>straw at flowering (FS)>harvested grain (HG)>ear at flowering (FE) for nitrogen, MT>EF>HS>20=FS>FE>HG for phosphorus and MT>EF>20>FS>HG>FE for potassium. 2. The time when the occurece of minimum nutrient content in minus plot is highest was considered as the optimum time for nutritional diagnosis of root zone. It was 20 days after transplanting in N and maximum tillering stage in P and K. 3. The highest relative difference($100{\times}(L-H)/H$), between maximum (H)and minimum(L) nutrient content appeared in harvested straw for N and P while in harvested grain for K and Si, suggesting the close relation to their translocation from straw to grain. 4. The corresponding yield of maximum nutrient content was higher than that of minimum content at all growth stages in N, at all stages except MT and EF in P, at 20 days after trans planting and harvest in K, but it was always lower in Si, thus the contribution of nutrient content to yield will be in the order of N>P>K>Si. 5. The highest relative difference ($100{\times}(L-H)/H$, where H and L stand for yields) between yields corresponding to maximum and minimum nutrient content appeared at 20 days after transplanting for N. P. K, indicating the time of the closest relation between yield and nutrient content. 6. The highest difference (H-L, where H and L stand for nutrient content) between N. P. K contents corresponding to maximum or minimum yields came at 20 days after transplanting. The contents of N. P. K corresponding to the maximum total dry matter yield were lower than those corresponding the maximum grain yield at this stage. These facts support the closest relation between yield and nutrient content at this time. 7. The highest yield among yields corresponding to maximum nutrient contents occured at 20 days after transplanting in N. P. K but the lowest yield among yields corresponding to minimum nutrient contents appeared at the same stage only in nitrogen. 8. From the above facts the optimum time for diagnosis of nutrient around root zone seems different from that for diagnosis of nutritional status in relation to grain yield.

  • PDF

Agronomic Characteristics and Productivity of Winter Forage Crop in Sihwa Reclaimed Field (시화 간척지에서 월동 사료작물의 초종 및 품종에 따른 생육특성 및 생산성)

  • Kim, Jong Geun;Wei, Sheng Nan;Li, Yan Fen;Kim, Hak Jin;Kim, Meing Joong;Cheong, Eun Chan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study was conducted to compare the agronomic characteristics and productivity according to the species and varieties of winter forage crops in reclaimed land. Winter forage crops used in this study were developed in National Institute of Crop Science, RDA. Oats ('Samhan', 'Jopung', 'Taehan', 'Dakyung' and 'Hi-early'), forage barley ('Yeongyang', 'Yuyeon', 'Yujin', 'Dacheng' and 'Yeonho'), rye ('Gogu', 'Jogreen' and 'Daegokgreen') and triticale ('Shinyoung', 'Saeyoung', 'Choyoung', 'Sinseong', 'Minpung' and 'Gwangyoung') were planted in the reclaimed land of Sihwa district in Hwaseong, Gyeonggi-do in the autumn of 2018 and cultivated using each standard cultivation method, and harvested in May 2019(oat and rye: 8 May, barley and triticale: 20 May.) The emergency rate was the lowest in rye (84.4%), and forage barley, oat and triticale were in similar levels (92.8 to 98.8%). Triticale was the lowest (416 tiller/㎡) and oat was the highest (603 tiller/㎡) in tiller number. Rye was the earliest in the heading date (April 21), triticale was April 26, and oat and forage barley were in early May (May 2 and May 5). The plant height was the highest in rye (95.6 cm), and triticale and forage barley was similar (76.3 and 68.3cm) and oat was the lowest (54.2 cm). Dry matter(DM) content of rye was the highest in the average of 46.04% and the others were similar at 35.09~37.54%. Productivity was different among species and varieties, with the highest dry matter yield of forage barley (4,344 kg/ha), oat was similar to barley, and rye and triticale were lowest. 'Dakyoung' and 'Hi-early' were higher in DM yield (4,283 and 5,490 kg/ha), and forage barley were higher in 'Yeonho', 'Yujin' and 'Dacheng' varieties (4,888, 5,433 and 5,582 kg/ha). Crude protein content of oat (6.58%) tended to be the highest, and TDN(total digectible nutrient) content (63.61%) was higher than other varieties. In the RFV(relative feed value), oats averaged 119, while the other three species averaged 92~105. The weight of 1,000 grain was the highest in triticale (43.03 g) and the lowest in rye (31.61 g). In the evaluation of germination rate according to the salt concentration (salinity), the germination rate was maintained at about 80% from 0.2 to 0.4% salinity. The correlation coefficient between germination and salt concentration was high in oat and barley (-0.91 and -0.92) and lowest in rye (-0.66). In conclusion, forage barley and oats showed good productivity in reclaimed land. Adaptability is also different among varieties of forage crops. When growing forage crops in reclaimed land, the selection of highly adaptable species and varieties was recommended.

Comparison of the Forage Quality and Productivity According to Varieties and Plant Parts of Imported Silage Corn (Zea mays, L) (도입 사일리지용 옥수수의 품종과 식물체 부위에 대한 사료가치와 생산성 비교)

  • Kim, Jong Geun;Li, Yan Feng;Wei, Sheng Nan;Jeong, Eun Chan;Kim, Hak Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.98-105
    • /
    • 2020
  • This experiment was conducted to a comparison of the productivity according to variety and forage quality by plant parts of imported silage corn (Zea mays, L) in Pyeongchang. The corns evaluated in this experiment were 8 varieties (P1184, P1151, P1194, P1543, P1345, P1429, P1443, and P2105) introduced from the United States, Pioneer Hybrid Co. The harvested corn was divided into 5 plant parts (leaf, stem, cob, husk, and grain), and the ratio of each part was calculated using dry weight and the feed value was analyzed. The emergence rate of corn was generally good except for the P1151 and P2105 varieties. The average tasseling date was July 24th and the silking date was July 27th, but the P2105 variety was late to July 28th and August 1st, and the remaining varieties were similar. P1345 was the highest (289 and 123 cm), and P1151 varieties were the lowest (267 and 101 cm) in the plant and ear height. Disease resistance was low in P1184, P1443 and P1429, and P1197 and P1345 were high. In the case of stover, the dry matter (DM) content was the lowest at 19.6% in the P1151 and the highest at 24.9% in the P1429. DM content of ear was the highest in the P2105 (55.5%), and P1184 (54.2%) and P1345 (54.3%) were also significantly higher (p<0.05). The DM yield of stover of P2105, P1429 and P1194 varieties was significantly higher (p<0.05), and ear yield of P2105, P1345 and P1443 was higher. The proportions of each part of plants (leaf, stem, cob, husk, and grain) divided by 5 was high, with 50-60% of the ear(grain+cob) ratio. The ratio of husk and cob was roughly similar, and the leaf and stem part showed a ratio of about 20%. The crude protein (CP) content was highest in leaf, followed by grain. The CP content of the stem was the lowest, and the husk was not significantly different among the varieties (p>0.05). The acid detergent fiber (ADF) content was similar to the rest parts except grain, but the leaf part tended to be lower, and other parts except the stem and leaf showed no significant difference between varieties (p>0.05). There was no significant difference in NDF (neutral detergent fiber) content in husk, but there was a difference between varieties in other parts (p<0.05). In addition, there was a special difference by plant parts for each variety, P2015 on the stem, P1197 on the leaf, P1151 on the cob, P1197 on the husk, and P1197 on the grains with high NDF content. IVDMD (in vitro dry matter digestibility) was not significantly different between stems and grains, but there was a difference between varieties in cobs and husks. According to the results, DM yield of P2105 variety was the best in the experiment, and the ratio of grain was excellent in P1543 and P1345. In addition, it was found that the feed value was higher in the leaves and grains, and the leaf and stem had higher feed values than husk or cob.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Jinbo' (중생 고품질 내도복 내병성 벼 품종 '진보')

  • Kim, Jeong-Il;Park, No-Bong;Lee, Ji-Yoon;Park, Dong-Soo;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gi-Hwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • A new rice variety 'Jinbo' is a japonica rice (Oryza sativa L.) with good eating quality, lodging tolerance, and resistance to rice stripe virus (RSV) and bacterial blight disease (BB). It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2009. This variety was derived from a cross between 'Yeongdeog26' with good grain quality and wind tolerance and 'Koshihikari' with good eating quality in 1998 summer season. A promising line, YR21324-56-1-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog45' in 2005. After the local adaptability test was carried out at nine locations from 2006 to 2008, 'Yeongdeog45' was released as the name of 'Jinbo' in 2009. 'Jinbo' has short culm length as 74 cm and medium maturating growth duration. This variety is resistant to $K_1$, $K_2$, and $K_3$ races of bacterial blight and stripe virus and moderately resistant to leaf blast disease with durable resistance, and also it has tolerance to unfavorable environments such as cold and dried wind. 'Jinbo' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Jinbo' in milled rice is about 5.65 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to middle plain, mid-west costal area, east-south coastal area, and south mid-mountainous area.

A High Quality Rice Variety "Cheongcheongjinmi" Adaptable to Low Nitrogen Fertilizer Application (질소 소비료적성 고품질 벼 신품종 "청청진미")

  • Cho, Young-Chan;Oh, Myung-Kyu;Choi, Im-Soo;Kim, Yeon-Gyu;Kim, Myeong-Ki;Hwang, Hung-Goo;Hong, Ha-Cheol;Jeong, O-Young;Choi, In-Bae;Choi, Yong-Hwan;Jeon, Yong-Hee;Lee, Jeom-Ho;Lee, Jeong-Heui;Lee, Jeong-Il;Shin, Young-Seop;Kim, Jeong-Ju;Kim, Ki-Jong;Baek, Man-Kee;Roh, Jae-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.654-659
    • /
    • 2009
  • "Cheongcheongjinmi" is a new japonica rice variety developed from a cross between Iri401 and Ilpumbyeo by the rice breeding team of National Institute of Crop Science, RDA. This variety is suitable for ordinary season culture of low level nitrogen application. Heading date of "Cheongcheongjinmi" is August 17, 4 days later than that of Sobibyeo in plain areas. It has culm length of 82 cm, and relatively semi-erect pubescent leaf blade and slightly tough culm tolerant to lodging with good canopy architecture. This variety has 13 tillers per hill, 126 spikelets per panicle and 90.2% of ripened grains. "Cheongcheongjinmi" showed lower spikelet fertility than Sobibyeo when exposed to cold stress. This variety showed slower leaf senescence and lower viviparous germination compared to Sobibyeo during the ripening stage. "Cheongcheongjinmi" is susceptible to blast disease, bacterial blight, virus diseases and planthoppers. The dried plant weight, total nitrogen and RuBisCO activity of "Cheongcheongjinmi" were higher than those of Sobibyeo in low level nitrogen application. The milled rice of "Cheongcheongjinmi" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows lower protein and amylose contents than those of Sobibyeo, and better palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.10 MT/ha at low level nitrogen application of ordinary season culture in local adaptability test for three years. Especially, "Cheongcheongjinmi" has better milling properties such as the percentage of whole grain in milled rice and milling recovery of whole grain, respectively than those of Sobibyeo. "Cheongcheongjinmi" would be adaptable to middle plain areas and middle-western coastal areas of Korea.

A New Rice Cultivar with Lodging Tolerance and High Grain Quality "Jongnambyeo" (중만생 고품질 내도복성 신품종 "종남(孮南)벼")

  • Park, No-Bong;Lim, Sang-Jong;Kwak, Do-Yeon;Song, You-Chun;Ha, Woon-Goo;Oh, Byeong-Geun;Yeo, Un-Sang;Kang, Jong-Rae;Yi, Gi-Hwan;Chang, Jae-Ki;Lee, Jeom-Sik;Nam, Min-Hee;Lee, Jong-Hee;Hwang, Heung-Gu;Kim, Ho-Yeong;Yang, Sae-Jun;Kim, Myeong-Ki;Choi, Hae-Chune;Kim, Soon-Chul;Moon, Hun-Pal;Lim, Moo-Sang
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.607-611
    • /
    • 2009
  • "Jongnambyeo", a new japonica rice cultivar(Oryza sativa L.), is a mid-late maturing ecotype developed by the rice breeding team of National Yeongnam Agricultural Experiment Station(NYAES) in 2001 and released in 2002. This variety originated from the cross of Milyang96/YR12734-B-B-22-2(in 1991/1992 winter) and was selected by means of a mixed method of bulk and pedigree breeding. The pedigree of Junambyeo, Milyang 169 designated in 1999, was YR15161-B-B-B-57-2-3. It has about 79cm in culm length and tolerant to lodging. And this variety is resistant to bacterial leaf blight($K_1$), stripe virus and moderately resistant to leaf blast disease. Milled rice kernels of "Jongnambyeo" is translucent with non-glutinous endosperm and clear in chalkness and good at eating quality in pannel test. The yield potential of "Jongambyeo" in milled rice is about 5.60MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to the Yeongnam plain and southern coastal of Korea.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Haeoreumi' (중생 고품질 내도복 내병성 벼 품종 '해오르미')

  • Kim, Jeong-Il;Park, No-Bong;Park, Dong-Soo;Lee, Ji-Yoon;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gihwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.638-644
    • /
    • 2010
  • A new rice variety 'Haeoreumi' is a japonica rice (Oryza sativa L.) with lodging tolerance, resistance to rice stripe virus (RSV) and bacterial leaf blight (BLB), and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2008. This variety was derived from a cross between 'Milyang165' with good grain quality and lodging resistance, and 'Haepyeongbyeo' with wind tolerance in winter season of 2000/2001. A promising line, YR22375-B-B-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog46' in 2005. 'Yeongdeog46' was released as the name of 'Haeoreumi' in 2008 after the local adaptability test that was carried out at nine locations from 2006 to 2008. 'Haeoreumi' has 74 cm short culm length as and medium maturating growth duration. This variety showed resistance to $K_1,\;K_2$, and $K_3$ races of bacterial blight, and stripe virus and moderate resistant to leaf blast disease with durable resistance, and also has tolerance to unfavorable environment such as cold, dry and cold salty wind. 'Haeoreumi' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Haeoreumi' in milled rice is about 5.58MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Middle plain, mid-west costal area, and east-south coastal area.